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Summary

Hybrid Fiber-Coaxial (HFC) networks are one of the most popular infrastruc-
tures used to provide cabled internet connection to paying customers. Despite
the technology having been around for many years, continuing developments
and the low cost of deployment means that it is believed to be an important
part of digital infrastructure for many years to come. This significant role, how-
ever, comes with challenges, as HFC networks are complex and susceptible to
a long range of failures that can happen in different locations in the network.
This requires Internet Service Providers (ISPs) to have a large fleet of techni-
cians maintaining the network during daily operation. This is costly in terms of
both financial and natural resources, making the optimization of fault detection
and localization highly valuable.

Currently, network monitoring is characterized by manual operations, again
highlighting the need for automatic and remote approaches. Additionally, many
ISPs do not have access to a fully known and updated network topology (the
path of connection from a customer modem to the terminal) which is important
for accurate troubleshooting and optimal route planning. This makes an algo-
rithm that can reconstruct these topologies using remotely gathered customer
data highly valuable.

In this work, we propose two different approaches for remotely detecting anoma-
lies or failures in HFC networks, along with one approach to reconstructing the
missing topology. Each of the methods will be using time series data from the
network of TDC NET, which is the biggest provider of digital infrastructure in
Denmark. One of the biggest challenges with this data is the absence of an accu-
rate ground truth. Our two anomaly detection approaches tackle this problem
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in two different ways. One approach utilizes the knowledge of a single and well-
known type of error known as Common Path Distortion (CPD). In cooperation
with domain experts, we develop a manually labeled dataset where the labels
correspond to the presence, respectively, absence of CPD. We evaluate multiple
supervised Machine Learning (ML) methods toward their ability to model the
dataset and show promising results. We analyze the parameter importance and
use that to propose a simple method achieving similar performance while being
easier to interpret and implement.

A different approach makes use of a Normalizing Flow (NF), which is a recent
generative model, to model the distribution of time series behavior in an un-
supervised way. This enables us to detect anomalous behavior in low-density
regions of the distribution. Our framework is based on using the NF to estimate
the density of a latent representation of the time series computed using an Au-
toEncoder (AE). While showing promising results, we additionally propose an
algorithm for excluding abnormal points from the learned distribution and thus
learning only the systematic behavior. We show that the abnormal points are
not only pushed out of the distribution but also arrange themselves in clusters
that can subsequently be used to identify potential underlying root causes.

Lastly, we evaluate the feasibility of accurately reconstructing the missing topolo-
gies using time series data from multiple customer modems. Specifically, we
train an encoder that can extract relevant events in time series that are infor-
mative with respect to which modems are correlated and which are not. We
base our method on an old method from biology used to infer phylogenetic trees
from gene sequences. We make multiple contributions to this problem including
an updated version of the problem of reconstructing these trees to make it appli-
cable in our case, along with an algorithm for finding the optimal solution. We
further contribute by demonstrating the feasibility of embedding this optimiza-
tion problem directly into a deep learning loss function to learn the informative
events for said algorithm and thereby reconstruct the missing topologies.



Resumé (Danish)

De såkaldte Hybrid-Fiber Coaxial (HFC) netværk (også kaldet bredbåndsnet-
værk), som består af både fiber og coax-teknologi, har længe været en af de mest
udbredte metoder brugt til at levere kablede internetforbindelser til betalende
kunder. Selvom teknologien efterhånden har mange år på bagen, gør den evige
udvikling og den lave anlægningspris, at teknologien højst sandsynligt vil være
en vigtig del af den digitale infrastruktur i mange år endnu. Dette betyder til
gengæld også, at der bliver ved med at opstå problemer i de komplekse netværk,
som er sårbare overfor en lang række fejl, der kan forekomme mange forskellige
steder i netværket. Det betyder, at internetudbydere er nødsagede til at have
en flåde af teknikere, som kan vedligeholde netværket i dets daglige drift. Det
er dyrt både i finansielle, men også i naturlige ressourcer, hvilket betyder, at
optimering af fejlfinding og fejllokalisering er et vigtigt forskningsområde.

Den dag i dag, er overvågning af netværket karakteriseret ved manuelt arbejde,
som igen tydeliggør behovet for automatiske, fjernstyrede metoder. Derudover
har mange internetudbydere ofte ikke adgang til en fuldt ud kendt og opdateret
netværkstopologi (altså den måde hvorpå kunderne er forbundet med terminalen
igennem kabler), som er vigtig for nøjagtig fejllokalisering og optimal ruteplan-
lægning. Dette betyder, at en algoritme, der kan rekonstruere de her topologier
kun ved hjælp af tidsrækkedata fra kunderne, vil have stor værdi.

I denne afhandling præsenterer vi to forskellige metoder til fejlfinding i bred-
båndsnetværk og én metode til at rekonstruere de manglende topologier ved
hjælp af tidsrækkedata fra kundemodemmer, forbundet til TDC NETs netværk,
som er det mest omfattende i Danmark. En af de største udfordringer med
denne type data er, at der ikke eksisterer nogen nøjagtig reference for, hvornår
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der er fejl i netværket. Vores to fejlfindingalgoritmer takler dette problem på
to forskellige måder. I den ene metode udnytter vi, at der findes en type fejl,
som er almindelig i bredbåndsnetværk og derfor allerede er kendt og forstået,
også kaldet Common Path Distortion (CPD). I samarbejde med domæneeks-
perter har vi fået udarbejdet et dataset inklusiv en reference for, hvornår CPD
forekommer. Vi evaluerer flere forskellige metoder indenfor MaskinLæring (ML)
ved at undersøge, hvor gode de hver især er til at detektere CPD - og det med
gode resultater. Vi analyserer, hvilke parametre der er vigtige, og bruger disse
til at foreslå en simpel metode, som klarer sig næsten lige så godt, men som er
nemmere at fortolke og implementere.

En anden metode gør brug af et såkaldt Normalizing Flow (NF) - en nylig ty-
pe model indenfor generativ kunstig intelligens - til at modellere fordelingen af
tidsrækkernes adfærd uden på forhånd at vide, hvor der forekommer fejl. Dette
gør det muligt at detektere fejl eller anomalier i områder med lav densitet i
denne fordeling. Vores overordnede metode bruger et NF til at modellere forde-
lingen af en latent repræsentation af tidsrækkerne, som vi først laver ved hjælp
af en såkaldt AutoEncoder (AE). Udover denne metode, som viser lovende re-
sultater, præsenterer vi også en ny algoritme, som kan ekskludere de fejlagtige
observationer, hvilket gør det muligt at modellere udelukkende den systematiske
variation i datasættet. Vi viser, at disse fejlagtige observationer bliver skubbet
ud af fordelingen og arrangerer sig selv i klynger, som kan forbindes med faktiske
underliggende fejl i netværket.

Sidst, men ikke mindst evaluerer vi, hvorvidt det er muligt nøjagtigt at rekon-
struere de manglende topologier ved brug af kontinuær data fra flere kunde-
modemmer. Specifikt træner vi en model, som kan trække relevante hændelser
ud af tidsrækkerne, som fortæller noget om, hvilke modemmer der korrelerer,
og hvilke der ikke gør det. Vi baserer vores metode på en gammel metode fra
biologien, som blev brugt til at udlede fylogenetiske træer fra gensekvenser. Vi
laver flere bidrag til problemet, hvilket inkluderer en opdateret formulering af
problemet med at udlede disse træer, hvilket gør det anvendeligt til vores for-
mål - og følgeligt en algoritme til at finde den optimale løsning. Vi bidrager
yderligere ved at demonstrere, at det er muligt at integrere det omtalte optime-
ringsproblem direkte ind i en objektfunktion som bruges til at lære et neuralt
netværk. Den resulterende model gør det muligt for os at udtrække relevante
hændelser fra tidsrækkerne, som så kan bruges til at rekonstruere de manglende
topologier.
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Chapter 1

Introduction

The ability to send messages across long distances has been a critical part of
human infrastructure ever since different civilizations engaged in conflict with
each other. Early versions of telecommunication consisted of visual signals such
as beacons arranged in chains that could be sequentially lit to signal the ar-
rival of an enemy [50] or sound signals such as made by drums used in ancient
African and Asian cultures [181]. Since then, telecommunication technology has
evolved dramatically, and from the middle of the 18th century, it has consisted
mainly of electrical signals sent through metal wires. At first, these electrical
wires simply conducted a current that completed a circuit, initiating a visible
process at the other end. From electrostatic displacement of small pieces of
paper or electrolysis of water in very early applications to the electromagnetic
movement of a needle in later applications marking the beginning of the well-
known electrical telegraphy popularized in the 19th century [81]. Later, it was
shown that Radio Frequency (RF) signals could be used to carry information.
With the arrival of telephones, this capability was initially realized through a
simple end-to-end connection. In this setup, the voice of a speaker at one end
of the line was electronically transmitted and reproduced as sound at the re-
ceiving end. This technology was further extended to wireless communication,
enabling the transmission of sound via a single radio wave. These innovations
laid the groundwork for digital signals, allowing data, in the form of bits, to be
encoded into the frequency, respectively, the amplitude of an electromagnetic
wave. This technology has expanded communication capabilities, facilitating
travel and interaction in deep space, even extending to objects on other planets.
It has also allowed individuals to connect globally from the palm of their hand,
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while recent innovations have further enhanced connectivity through a network
of satellites, enabling truly global communication [175].

Modern electric telecommunication uses the so-called broadband technology to
send information at very high speeds. In broadband technology, RF signals
at many different frequencies at once are used to send data through a given
medium. Media include coaxial cables, fiber-optic cables, or simply the air or
empty space using electromagnetic waves (radio or satellite) [57]. Coaxial cables
are the most widespread and accessible medium used to provide cabled high-
speed internet access to paying customers [18]. This type of cable is usually
only deployed in the last part of the network, where they are used to branch
out to the customers from a local terminal. This terminal again connects to the
backbone internet using fiber technology, granting this type of network its name;
a Hybrid Fiber-Coaxial (HFC) network. The relatively low investment cost and
continuing development reaching ever-higher speeds mean that HFC networks
are not likely to be phased out in the near future, but will continue to be an
important part of the digital infrastructure [55]. This means that continuous
research in the maintenance and operation of coaxial networks is continuing to
be valuable.

To this day, digital infrastructure is still considered critical and governments all
over the world have special requirements for the continuing maintenance and
surveillance of the network as failures could e.g. prevent the population from
receiving news about threats from outside or natural disasters [185, 122, 99].
Additionally, the European Union identifies “Advanced Connectivity, Naviga-
tion, and Digital Technologies” as one of ten technology areas that are critical
to the security of the European economy [37].

1.1 The Green Transition

The continuing development of human civilization has achieved remarkable ad-
vancements in technology, industry, and living standards. However, research
shows that this rapid development has come at a significant environmental cost,
based on unsustainable practices for instance the burning of fossil fuels for en-
ergy, transportation, and other industrial activities. Burning fossil fuels emits
CO2 which is one of the so-called greenhouse gases that has been shown to be
a cause of the greenhouse effect leading to global warming and climate change
posing a great threat to the health of the planet impacting both the human
civilization and the natural world [85].

This great threat makes it increasingly important to make technological and
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cultural advancements toward an economy that is sustainable in terms of natural
resources. In 2019 the European Union presented the European Green Deal
in which the goal is to be the first climate-neutral continent, for instance by
decoupling the economy from resource consumption [54]. Conclusively, every
advancement or action that can be taken to decrease greenhouse gas emissions
is highly relevant in the pursuit of this ambitious goal.

1.2 Motivation

TDC NET is the biggest provider of digital infrastructure in Denmark and cur-
rently has broadband or fiber connections to more than 1.5 million addresses in
Denmark [180]. The broadband network is used by hundreds of thousands of
paying customers who are serviced by the TDC NET fleet of technicians. The
size of this infrastructure requires one of Denmark’s biggest fleets of around 850
technicians driving upwards of 80,000 kilometers every day, which is the equiv-
alent of circling the Earth twice [17]. Because the technicians perform a wide
range of tasks and it is difficult to predict which tasks a given technician will be
presented with on a given day, they need to carry a large amount of equipment.
This requires the technician fleet to consist of big vehicles making the driven
kilometers even more costly in terms of money and emission of greenhouse gases.
This project is part of the GREENFORCE project which has as its main goal
to use smart decisions and Artificial Intelligence (AI) in an attempt to bring
down these emissions. This thesis aims to assess the potential of using AI and
Machine Learning (ML) to aid different aspects of the daily operation of the
network of TDC NET.

In this thesis, the aim is to provide a thorough overview of the broadband setting
and the problems that relate to them. In collaboration with domain experts at
TDC NET, some potential research problems have been identified in which ML
could be used to better the situation. These include:

Anomalies / Network breakdowns

• Errors in the broadband network are generally sporadic, not well
studied, and hard to detect

• The business case of network owners makes it hard to justify repairing
or improving the connection of customers who are not complaining

• Unreliable customer complaints make it hard to acquire an anomaly
ground truth

Route optimization
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• Deficient mapping of the network connections complicates the search
for errors that are located along the network infrastructure

• Not being aware of likely future errors may cause unnecessary driving,
as technicians need to return at a later stage rather than fixing the
errors prematurely

In this thesis, the problems mentioned above will be investigated to explore
the potential of using performance metrics gathered at regular intervals by the
many devices making up the network, arranged as time series. An introduction
will be given to the different time series metrics, what they describe, and how
they are gathered. Various ML models will be used to analyze the time series
data, including different types of deep Neural Networks (NNs).

The intuition behind NNs builds on the idea of the brain with a set of neurons,
arranged in a network, which communicate by firing up and passing information
between one another along the network edges. The goal is for the neurons to
learn to fire up or activate when a specific pattern is observed and thereby, in
unison, to learn to distinguish complicated patterns. It is customary to arrange
the NNs in layers that can learn increasingly complex patterns. If multiple layers
are used in an NN, it is referred to as a deep NN. Using deep NNs to model a
given problem is denoted Deep Learning (DL).

DL has become very popular and is state-of-the-art in many fields such as nat-
ural language processing [87] and image processing [111] and has also shown
great potential in time series analysis including prediction [23, 121], classifi-
cation [182, 82], and change-point-detection [98, 42]. This popularity in ML
research is believed to be due to the flexibility of deep NNs, where choices for
the architecture and training objectives can be made in various ways, allowing
for models that match the intuition of the problem at hand. Recently, one
of the most popular branches of DL is that of probabilistic generative models
that utilize stochasticity to allow for the generation of random artificial samples
that are previously unseen [12]. In probabilistic models, random variables are
used to model distributions of outputs or representations of the data instead
of deterministic values. This allows for modeling uncertain or unobserved vari-
ables by quantifying their variability and most likely outcome. A model that
encodes data into a distributional representation and can also decode the input
data back from this distribution (i.e., reverse the process) is called a generative
model. Such a model can be used to generate or sample new random instances
that were not part of the input data.

To showcase the capabilities of probabilistic generative models, I include a poem
written by one of the first commercially available large-language models, Chat-
GPT [150]. ChatGPT has been trained on vast amounts of data available on
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the internet and utilizing an amount of computational power that is hard to
grasp. AI assistants have been generally well-received and are already used
for assistance in several tasks like writing drafts, checking for clarity or gram-
mar [163], summarizing meetings [186], tasks that can make business operations
more efficient [143], or functions that can help create more specialized teaching
in education [119]. The introduction of large language models has also sparked
the novel research area of prompt engineering [30, 161]. After being prompted
to write a poem on the very contents of this thesis, ChatGPT yielded the fol-
lowing [128]:

In the realm of ones and zeros, where data streams unfurl,
In the dance of signals, where patterns swirl,
There lies a quest, a journey bold and grand,
To grasp the essence of time’s shifting sand.

In the tapestry of time series, woven deep,
Where secrets of the past and future sleep,
Representation learning strides with grace,
Unveiling truths in each intricate space.

Through layers of abstraction, it seeks to find,
The essence of patterns, the ties that bind,
In the heartbeat of data, it hears the song,
Of anomalies hidden, waiting long.

In the realm of hybrid-fiber coaxial might,
Where networks span realms of day and night,
Faults lurk in shadows, unseen, untold,
Waiting for detection, for the story to unfold.

With algorithms sharp, like blades they cut,
Through the noise and chaos, without a rut,
Identifying glitches, anomalies rare,
In the vast expanse of signals, they dare.

Representation learning, fault identification’s a
A symphony of science, where minds depart,
To unravel mysteries, to chart unknown lands,
In the ever-expanding universe of data’s hands.

Accurately and graciously versifying the contents of this thesis, the above poem
demonstrates the level commercially available AI and probabilistic generative
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models have recently reached, thus also illustrating the importance of and the
potential for research in the area of probabilistic generative models.

1.3 Contributions

During this project, multiple approaches to time series analysis on data from
broadband networks have been examined resulting in multiple contributions
divided among the three research papers included in this thesis. Contributions
are both specifically aimed at application to broadband networks but some also
have implications reaching further than that. Below is a short introduction to
the analyses carried out in each of the papers along with clear contributions
from each one:

• Paper A – SeePD: Detecting Common Path Distortion Faults in
Broadband Networks
We propose a manually labeled dataset based on remotely gathered data
from the broadband network to be used for modeling a specific type of er-
ror called Common Path Distortion (CPD), frequently occurring therein.
We examine different supervised approaches to modeling the fault includ-
ing a feature engineering scheme and a simpler thresholding algorithm.
Contributions include:

– A reliable dataset with an accurate ground truth for detecting CPD
faults in HFC networks.

– A precise way of identifying CPD in HFC networks directly using the
above dataset including a feature importance analysis.

• Paper B – Anomaly Detection in Broadband Networks: Using
Normalizing Flows for Multivariate Time Series
We propose an unsupervised two-phased approach to estimating the den-
sity of a window from a multivariate time series. We propose computing
the density on a latent representation of the windows using a Normalizing
Flow (NF), which is a recent method in generative AI. We propose an
algorithm for learning only the systematic behavior of the time series by
iteratively excluding observations that fall outside the distribution when
learning the NF. Contributions include:

– A novel two-phased framework for estimating the density of the be-
havior of a time series within a window preserving contextual infor-
mation.
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– A novel algorithm for modeling only the systematic behavior in a
dataset that includes outlying behavior.

– A novel algorithm based on bootstrapping for estimating the cumu-
lative density function (CDF) of the densities derived from a mul-
tivariate distribution that allows for the calculation of p-values for
single observations.

– An explorative analysis of the outlying behavior in the time series
gathered remotely from the TDC NET broadband network.

• Paper C – Topology Reconstruction in Telecommunication Net-
works: Embedding Operations Research within Deep Learning

We propose an algorithm for training an encoder able to extract relevant
time-series events from continuous data with respect to solving the prob-
lem of finding the optimal topology in regions where it is not known. We do
this by considering an alternative formulation of the ancestral tree recon-
struction problem, known from Computational Biology, ensuring uniquely
optimal solutions. We use the algorithm for finding the optimal tree di-
rectly in the loss function of the encoder using a contrastive approach.
Contributions include:

– An alternative formulation of the tree topology reconstruction prob-
lem specifically engineered for the HFC network.

– A novel algorithm for obtaining the optimal score and solution to the
above problem.

– A conjecture stating that the optimal solution to the above formula-
tion will always yield a uniquely best score.

– A novel approach to leveraging the synergy between the fields of
Operations Research (OR) and DL by using an optimization problem
directly in a DL loss function.

– A contrastive approach to training an encoder able to extract rele-
vant events from continuous time series data with respect to the new
alternative optimization problem mentioned above.

– A stochastic version of the algorithm mentioned above to allow for
automatic differentiation during the learning stage.

– An approach to simulate time series data from a given customer mo-
dem given the new alternative tree reconstruction setting mentioned
above.
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1.4 Structure of the Thesis

Overall this thesis consists of two parts. The first part–Background and Theory–
is designed to equip the reader with the necessary background knowledge to
properly read and understand the research carried out as part of the project.
The second part–Research Outcomes–will initially summarize and discuss the
main research contributions and results obtained throughout this project, before
the scientific articles produced along the way are included, and thereby ending
the thesis. Each of the chapters is introduced briefly in the following:

Part I – Background and Theory
Chapter 2 provides a short introduction to HFC networks and how broadband
technology is used to transmit data. This includes the entire setup from the
backbone internet to the customers and how the RF signals are used to encode
data. This chapter should also give the reader a better understanding of the
origins of the different variables in the telecommunications dataset used for some
of the work in this thesis.

In chapter 3 a brief introduction to the different models used throughout this
thesis will be given. This section will equip the reader with the relevant back-
ground theory before diving into applying and modifying the models as part of
the novel research included in this thesis.

Chapter 4 provides an overview of the latest advancements or methodologies
relevant to our problems at hand. The chapter will both cover previous at-
tempts to detect errors in HFC networks and recent advancements in learning
representations of time series mainly using deep learning.

Chapter 5 will introduce the specific broadband dataset provided for this project
by TDC NET and used in this thesis. The chapter will cover different pre-
processing problems and our attempts at dealing with them. This should inform
the reader how the time series data has been made ready for further analysis.

Part II – Research Outcomes
Chapter 6 will summarize, discuss, and contextualize each of the papers pro-
duced during this project and hence included in this thesis. This section should
provide the reader with the intuition and thought processes behind the direction
that this research has taken, and how we believe it fits into both the current
operational workflows and the state-of-the-art.
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In chapters 7, 8, and 9, the three relevant research papers produced throughout
this project–Papers A, B, and C–are included in their unaltered form.
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Part I

Background and Theory





Chapter 2

Hybrid Fiber-Coaxial
Networks

The HFC network or broadband network is used to distribute an internet signal
and/or broadband TV signals from a central backbone network to a set of end
customers. Internationally, the backbone network consists of big hubs connected
by very big (often undersea) cables. Nationally1, the backbone network consists
of a number of Optical Line Terminals (OLTs) between which information is
sent using fiber technology2. Each of the OLTs has connected to it a set of
Coaxial/cable Media Converters (CMCs) that converts the fiber signal into a
RF signal that uses the amplitude and phase of an oscillating signal to encode
and transmit a message along insulated copper-wires. A CMC is also sometimes
referred to as a fiber-optic node. The RF signal used in this case is modulated
according to a given Data Over Cable Service Interface Specification (DOCSIS)
that is normally DOCSIS 3.0 or DOCSIS 3.1 or a mixture of the two. DOCSIS
3.1 is a never specification released in 2013 allowing for much higher transfer
speeds [19]. See section 2.1 for how these specifications work in practice. The
RF signal is sent to and from an end customer using coaxial cables between a
sequence of splitters, splitting the cable, and amplifiers, amplifying the signal

1Referenced in Denmark - bigger countries might have higher level backbone networks
nationally

2Fiber technology is used to send information through an optical cable using light. The op-
tical fibers have some advances since there is almost no outside RF interference and very little
signal degradation when sent over long distances. The same principles for signal modulation
as explained later in this chapter apply.
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Figure 2.1: Illustration of the topology of the network below a CMC using
RF signals and coaxial cables. The red triangles correspond to amplifiers
and the red circles correspond to end customers. Often the signal cable is
split close to or at the amplifier, but this is not always the case. The OLT
is part of the national backbone network.

in the cable. A signal or data sent from the CMC to the customer is denoted
DownStream (DS), while the other way is denoted UpStream (US). The coaxial
cable consists of an insulated metal conductor in-cased in either a wire mesh
or solid metal wrapping to prevent noise from outside RF interference[43]. An
example of a coaxial cable is shown in Figure 2.2 and a simplified illustration of
the network below a local CMC is shown in Figure 2.1.

2.1 Signals and Modulation in Broadband
Networks

To send data using RF, the signal needs to be modulated, i.e. turned from bits of
data (0s and 1s) into a representation that can be expressed using an RF signal.
In DOCSIS 3.0 specification this is done using the Qudrature Amplitude Modu-
lation (QAM) technology, which uses amplitude and phase changes to encode a
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Figure 2.2: Example of a coaxial cable consisting of an inner metal con-
ductor insulated and in-cased in a solid metal tube. The metal tube is used
to prevent outside RF interference that causes noise [43].

Figure 2.3: Example of the two underlying RF signals used in QAM mod-
ulation here with a frequency of two. The quadrature component (green:
a cos curve) is shifted 90 degrees (1/4 wavelength) with the in-phase com-
ponent (red: a sin curve).

message. In the DOCSIS 3.1 specification, the Orthogonal Frequency-Division
Modulation (OFDM) technology is used that utilizes more of the frequency band
allowing for much higher transfer speeds.

2.1.1 Quadrature Amplitude Modulation

The Quadrature Amplitude Modulation (QAM) technology makes use of a single
carrier frequency but in two different phases. Namely the in-phase component
(a sin curve) and a quadrature component that is shifted 90 degrees concerning
the in-phase component (a cos curve). An example of these two underlying
signals is shown in Figure 2.3. A given message at time t is divided into two
parts; I(t) and Q(t) is converted into a QAM signal in the following way:

s(t) := sin(2π · f · t) · I(t) + cos(2π · f · t) ·Q(t) (2.1)
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Figure 2.4: Simple example of the QAM technology in which a message
is modulated into two different RF signals based on two different constel-
lations. Namely BiPhase Shift Keying (BSPK) with two amplitudes and
Quadrature Phase Shift Keying(QSPK) also known as 4QAM.

Where f is the carrier frequency. Notice that I(t) and Q(t) become the ampli-
tudes of respectively the in-phase (sin) signal and the quadrature (cos) signal.
The values of Q(t) and I(t) are mapped into a so-called constellation arranged
as a grid based on the bit capacity of the system so that the bits can be appro-
priately decoded on the other end. A simple example of this process is shown in
Figure 2.4 where a message is modulated into two different RF signals based on
two different simple constellations. Constellations can reach up to 4096QAM
(a 64 × 64 grid) that can send 64 bits per unit time DOCSIS 3.0 specification,
and even bigger for DOCSIS 3.1.

2.1.2 Orthogonal Frequency-Division Multiplexing

A limiting factor of the QAM technology is the need for having non-overlapping
carrier frequency intervals. An interval is needed for the signal to speed up or
slow down to accurately transmit the phase shifts that are a part of the QAM
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(a) Illustration of the frequency division
scheme of the QAM technology (bot-
tom) and why is it problematic to have
them close to each other.

(b) Illustration of the OFDM technology.
Notice that carrier frequencies are chosen in
such a way that they are 0 whenever any other
carrier is at its high point.

Figure 2.5: Illustrations of the frequency division of the QAM and OFDM
technologies respectively. Illustrations are taken from [178].

signals. The OFDM technology provides a solution to this problem as it allows
for carrier frequencies to overlap. This is done by choosing a set of carrier
frequencies so that they are orthogonal to each other. In this way, the Fourier
transform can be used to properly demodulate the signal in the receiving end.
An illustration of this principle is shown in Figure 2.5. The advantage of using
this technology is that it makes it possible to utilize more of the bandwidth and
use it to send a higher number of smaller messages, each with more certainty.

2.2 Field service in HFC networks

The high complexity of the HFC network makes it vulnerable in several ways
meaning that several potential problems can occur at different locations in
the network. Problems that directly impact customer experience include; cor-
rosion where cables are connected, damaged cables, improper installation of
Customer-Premises Equipment (CPE), and different outside factors that inter-
fere with the physical properties of the materials and RF signals [76]. For in-
stance, the weather has been shown to impact network performance and degra-
dation [195, 129]. Some problems occur instantaneously (if for instance the
cables are damaged during excavation projects) and some occur gradually (for
instance corrosion in connectors). In general errors in the HFC network are
characterized as being sporadic and difficult to detect.

The large number of problems occurring both instantaneously and gradually
means that a vast amount of maintenance is needed, making it both expensive
and environmentally harmful to operate the network. This is due to technicians
often driving many kilometers between individual jobs and because a big van
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is needed to bring equipment to solve every task encountered. The amount of
driving is further intensified by network owners not always knowing or having
access to a full and updated topology of the network, i.e. the way customers are
connected to the CMC. This means that technicians sometimes have to perform
a manual search for the location of the root of the problem [138, 35, 115]. As
of 2022, TDC NET estimates that their technicians drive approximately 80,000
kilometers daily to service the hundreds of thousands of customer homes span-
ning the whole country with more than 1.5 Mio. addresses connected (though
not necessarily utilzed) [17, 180].

Even though many different errors can occur in the network, TDC NET domain
experts estimate the five most common faults they deal with to be:

1. Cable connections where cables (in street cabinets) are not properly
connected, prone to rust, incompatible, or impaired in another way. Is
responsible for a major part of the faults in the network according to
domain experts at TDC NET.

2. Customer-Premises Equipment (CPE) errors due to improper instal-
lation or failure.

3. Installation errors caused by technicians connecting the wrong customer
in the street cabinet in front of the house.

4. Cable faults caused by damage to the cables by e.g. excavation projects.
Potential attempts can have been carried out by the homeowner to fix the
problem without contacting the Internet Service Provider (ISP).

5. Sockets inside the customer homes that are either outdated or connected
to a loose cable acting as an antenna and thereby introducing noise into
the network.

Figure 2.6 shows an illustration of where the errors mentioned above are typically
located in the typical path from CMC to the customer in the HFC setting. One
of the typical cable connection errors is the so-called Common Path Distortion
(CPD) that is a direct consequence of stress or corrosion and causes the noise
from the outside to leak into the signal in the form of ingress [65]. Additionally,
it can cause the DS signal to leak into the US signal or vice versa thereby
introducing unwanted noise [164].
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Figure 2.6: Illustration of a typical path from the CMC to the customer
through a sequence of amplifiers (white triangles) and splitters (white rect-
angles). The red numbers correspond to typical fault locations as mentioned
in the list in section 2.2.

2.2.1 Trouble tickets and their uncertainty

As explained earlier, problems are hard to find and even harder to proactively
detect and classify. In many cases, network owners rely on customer complaints
to find problems in the network that need fixing, as opposed to automatically
detecting faults and dispatching technicians [77]. This approach, however, is
not ideal for several reasons:

• Customer complaints are prone to much uncertainty and depend on mul-
tiple factors:

– The severity of the problem
– The patience of the customer
– Customers that are used to continuously bad connections are less

likely to make complaints [76]

• Reporting an error means that the customer already experienced bad ser-
vice and will be more likely to change ISP.

• Only a fraction of the customer complaints lead to technician dispatch
and trouble tickets at the network owner. This is due to the possibility
of handling many problems over the phone (especially problems with the
CPE).

• Often many different ISPs use the same network (with the same network
owner). Different ISPs have different mechanisms for handling customer
complaints and thereby also for creating trouble tickets for the network
owner.
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Figure 2.7: Example of Full Band Capture (FBC) for a given modem at
a given time. The x-axis shows the carrier frequency and the y-axis shows
the power of the signal measured in dB. The figure is taken from [184].

Using trouble tickets as ground truth for modeling is thus not considered a viable
option and other approaches need to be examined [33]. Other approaches could
include: producing a labeled dataset by manually labeling observations; using
trouble tickets as hints rather than a ground truth, as already examined by Hu
et al. in [77]; or detecting anomalies by the use of e.g. unsupervised learning.

2.2.2 Performance metrics

There are many ways of measuring the quality of a broadband signal as a result
of the path that it is traversing. The most informative data is based on the
Full Band Capture (FBC) in which the power of the signal at every frequency
is captured in real-time. Capturing this data, however, requires a spectrum
analyzer, which is specialized equipment. Moreover, capturing the full spectrum
would result in an excessive amount of data. Due to both of these factors, FBC
is primarily reserved for service by technicians who include spectrum analyzers
in their everyday equipment. An example of the FBC for a given modem at a
given time is shown in Figure 2.7.

Due to the FBC data being too troublesome to gather and work with, other
measures are obtained that summarize the performance of the signal at a given
time in different ways using the so-called Simple Network Management Proto-
col (SNMP). Some measures are relatively naïve such as the mean power of the
signal measured in dB, how many bits or codewords were sent on a given path,
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how many of these could be correctly demodulated, how many of these were er-
roneous, and how many erroneous bits could be corrected using error-correcting
codes. 3 Some are more sophisticated by e.g. looking at the power and noise in
the actual RF signal before and after demodulation, and some are very complex
by looking at the required amount of pre-equalization of the signal needed for
it to be properly sent through the network in the US direction [158]. A few of
these measures will be described in detail in the following.

2.2.2.1 Modulation Error Ratio

The Modulation Error Ratio (MER) is commonly used for assessing the health
of a digital signal [127]. The incoming symbols rarely hit the constellation points
described in section 2.1 exactly, but hit according to some distribution (ideally)
centered in the constellation points. The MER metric describes how well the
incoming signal ’hits’ the constellation points and is defined by:

MER = 10 log10
N∑
j=1

(
I(j)2 +Q(j)2

)
(δI(j)2 + δQ(j)2)

(2.2)

where I and Q are the in-phase and quadrature parts of the ideal target symbols
of the different samples, and I and Q are the in-phase and quadrature parts of
each of the incoming sampled symbols. The metric is illustrated in Figure 2.8.

2.2.2.2 Signal-to-Noise Ratio

Whereas the MER explains how well the receiving end is able to perform de-
modulation of the incoming signal, the Signal-to-Noise Ratio (SNR) describes
the noise in the signal either prior to modulation at the transmitting end or
after demodulation at the receiving end [14]. This means that the SNR metric
captures the noise from the full path, i.e. noise in the original transmitted sig-
nal, modulation and transmitter noise, noise contributions from the transport
path, and noise in the receiving end due to demodulation.

The SNR is defined to be the ratio of the peak-to-peak power of the baseband
signal to the noise within that signal (the noise floor). This means that the SNR
is a quantification of how well a signal can be distinguished from the noise at the

3Error-Correcting Codes are algorithms that can ensure and potentially correct a package
of binary bits. Multiple algorithms exist such as Reed-Solomon codes [151], Low-Density
Parity Checks [171], and recently DL has also been investigated as a means of obtaining
error-correcting codes [44].
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Figure 2.8: Illustration of the Modulation Error Ratio (MER) metric
taken from [75]. Incoming symbols rarely hit the constellation points ex-
actly, but according to some distribution centered in it. The better the
signal is, the more precise the signal becomes, hence the lower the uncer-
tainty of the distribution.

receiving end after having traversed the whole path. The measure is visualized
in Figure 2.9.

2.2.2.3 Pre-equalization Parameters

In order to aid network owners in finding the root causes of poor service before
the problem would cause an impairment for the customers, CableLabs started
phasing in a framework for Proactive Network Maintenance (PNM) with the
second generation DOCSIS specification in around 2005 [184]. It leverages val-
ues of the parameters of the so-called pre-equalization mechanism designed to
correct an imputed signal exiting the modem, i.e. the US direction. This is
achieved by a central node (typically the OLT) reading the signal coming from
a given modem. If a signal is somehow impaired the OLT sends instructions
on how the modem should correct its US signal to achieve the optimal perfor-
mance [189]. An example of the FBC of an impaired signal before and after
pre-equalization is shown in Figure 2.10.

The pre-equalization mechanism can correct signals that suffer from different
kinds of distortion including both linear impairments in which the phase and
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Figure 2.9: Illustration of the SNR principle on a small section of the
spectrum. The SNR value is defined to be the ratio between the power of
the signal and the power of the noise.
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(a) Before applying pre-equalization

(b) After applying pre-equalization

Figure 2.10: Example of how pre-equalization in the US signal can fix
an impaired signal caused by problems in the cable path. Here visualized
using the FBC on a range of frequencies (x-axes). The y-axes shows the
power of the signal measured in dB. Figures are taken from [184].
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amplitude of a signal are linearly distorted, and non-linear impairments such as
CPD or micro-reflection in which the signal is reflected at some point where the
impedance through a cable connection does not match the power of the signal
flowing through. It corrects the signal by delaying and amplifying portitions of
it as specified by pre-determined coefficients.

Pre-equalization parameters summarize the amount of pre-equalization applied
to the US signal at a given time point and how much potential the pre-equalization
mechanism has to improve further deteriorating of the signal. One important
parameter to highlight is the Main Tap Compression (MTC), which is defined as
the ratio of the power in the entire signal to the power in the unaltered portion
of the signal. This metric provides insights into the condition of the entire path
from the backbone internet to the customer modem and indicates how close the
signal is to failing or breaking down [184].
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Chapter 3

Theory

A brief introduction to a range of ML methods used for various analyses in this
thesis. This chapter is meant to equip readers who are new to ML with the
necessary understanding to fully comprehend the analyses carried out later on.
The chapter can also be used to reference the different methods.

Emphasis will be put on Neural Networks (NNs) and Normalizing Flows (NFs)
as a good understanding of both concepts is believed to be important for proper
understanding of the research presented in this thesis.
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2 9 6 8 9 6 4

Figure 3.1: Example of seven random images from the MNIST dataset
including their labels. Each of the 28 × 28 pixels has an intensity value
between 0 (black) and 255 (white).

3.1 Classification models

One of the most intuitive ways to use ML is for classification purposes. In
a classification model, it is assumed that all the observations in the training
dataset, x1,x2, . . . ,xN , will have a corresponding label, y1, y2, . . . , yN , from a
dictionary of potential labels, Y. The goal of the model is then to learn how
to distinguish the different classes in the best way. A very classic example of a
classification problem is that of the Modified National Institute of Standards and
Technology database (MNIST) dataset that consists of small grayscale images
of one of the digits between 0 and 9 where the goal for the model is to determine
the correct digit using the image as an input [96]. A few MNIST digits with
labels are shown in Figure 3.1.

A wide range of classification models exist which is the reason why only the few
methods that are used for analysis later in this thesis will be covered. One of the
methods used for simple classification purposes later on is called a MultiLayer
Perceptron (MLP) which is a different term for a simple artificial NN with more
than one layer. See section 3.2 for an introduction to those.

3.1.1 Logistic Regression

Logistic regression is a type of generalized linear model that requires the label
dictionary to be binary, i.e. Y = {0, 1}. The desired output of the model is a
probability for either class, i.e. πi. An example of a labeled dataset with one
explanatory variable is shown in Figure 3.2 on the left. It is immediately clear
that an ordinary linear regression will not work in this case, both due to the
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Figure 3.2: An example of a logistic regression problem. A model has
been learned that estimates the probability of an observation belonging
to the yellow class, π. It does this having learned a linear model on the
explanatory variables in the logit-tranformed space which is visualized on
the right.

outcome not being proportional to the explanatory variable, and also because an
ordinary linear model can take values outside the interval from zero to one. For
these reasons, the logit function is used as a link function mapping the interval
]0; 1[ into the reals, R, thus easing the linear modeling using the explanatory
variables in the data [49]. Given an observation, xi the link function is given
by:

log
(

πi
1− πi

)
= x⊤

i β + β0 (3.1)

Where β is the estimated parameter vector and β0 is the estimated offset. In
Figure 3.2 of the right, it is immediately clear that the logit-transformed space
provides a much better basis for a linear model. The black regression line shown
on the right is transformed into the estimated probabilities shown by the black
line on the left plot in the figure.

Logistic regression models are usually learned by maximizing the log-likelihood
of the observed outcome with respect to the parameters of the model. In this
case, the observation can be seen as independent binary random variables that
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according to the Bernoulli distribution will have a joint distribution given by:

l(π1, π1, . . . , πN ; y1, y2, . . . yN ) =

N∏
i=1

πyi

i (1− πi)(1−yi)

= exp
(

N∑
i=1

yi log (πi) + (1− yi) log (1− πi)
)
(3.2)

Now rewriting the link function we get:

πi =
1

e−(x⊤
i β+β0) + 1

and 1− πi =
e−(x⊤

i β+β0)

1 + e−(x⊤
i β+β0)

(3.3)

This means that the maximum log-likelihood optimization problem will be given
by:

max
β,β0

{
N∑
i=1

yi log
(

1

e−(x⊤
i β+β0) + 1

)
+ (1− yi) log

(
e−(x⊤

i β+β0)

1 + e−(x⊤
i β+β0)

)}

= max
β,β0

{
N∑
i=1

yi(x
⊤
i β + β0)− log

(
1 + ex

⊤
i β+β0

)} (3.4)

3.1.2 Random Forest

A random forest is a so-called ensemble method because it consists of a set of
different decision trees all voting independently. The intuition is that each tree
when presented with an observation, will output its most likely class given the
information utilized by it. The majority vote of all trees in unison will then be
a good generalization of the estimated class of the observations [105].

A decision tree is a tree in which the nodes correspond to a test on a variable
from the dataset and the branches to the different outcomes of the test. The
leaves of the tree represent an output class. One starts at the root node of
the tree and walks along the edges as dictated by the value of the parameter
examined at that step. An illustrative example of a decision tree used to classify
fruit is shown in Figure 3.3. The decision tree would use metrics such as the
Gini index to choose the optimal feature and test to use at every node in the
tree given the data. The Gini impurity calculates the probability of a random
observation from the dataset being misclassified by the tree is defined by:

IG(p) = 1−
J∑

j=1

p2j (3.5)
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Figure 3.3: Example of a decision tree used to classify fruits. One starts at
the top and follows the branches based on the value of the tested parameter
in each node. Once a leaf node is reached its value becomes the predicted
class.
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where J is the number of classes in the dataset and pj is the relative frequency
of class j. One way to train the decision tree is thus to choose the feature and
threshold that maximizes the decrease in impurity. In order not to overfit the
decision trees, multiple approaches can be applied. For instance, early stopping
allows the user to specify some stopping criteria (e.g. every leaf having below a
number of observations), or post-pruning can be used to remove branches that
do not result in a significant improvement of the model.

The random forest is fitted to the data using a method called bagging. In
bagging, a number of different trees are fitted. For every tree, a random subset
of the observations and/or features in the dataset is used to fit it. If a single
tree were to be trained on all the data it would often lead to overfitting as the
model would learn very irregular patterns. However, learning many trees that
each is less irregular has shown to generalize the data much better [13].

3.1.3 XGBoost

In the eXtreme Gradient Boosting (XGBoost) model many concepts are intro-
duced designed to improve the performance of random forests and decision trees.
The model entails sequentially adding so-called gradient-boosted decision trees
to the model [31]. Unlike decision trees, gradient-boosted trees use continuous
outcomes that can be used to calculate residuals1 using a differentiable loss
function. Residuals are calculated before each tree is added to the model based
on the intermediate predictive power of the preliminary model. Each gradient-
boosted decision tree is built by considering how to improve the intermediate
residuals (maximizing the gradient of the loss function) while the residual and
the predictive improvement are used to decide the magnitude of the contribu-
tion of the new tree. In the end, an XGBoost is an additive model considering a
sequence of gradient-boosted trees making it an ensemble method. The model
outputs the log odds of the given observation belonging to each of the classes
(and thus can be turned into a probability):

ŷi = ϕ(xi) =

K∑
k=1

fk(xi) (3.6)

where K is the total number of trees and fk is the kth gradient-boosted tree
that has a structure and leaf weights associated with it. To learn the first tree,
the null model considering the overall likelihood of any observation belonging
to each of the classes is used.

1Each leaf outputs the log-odds of the observation belonging to each of the classes
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The XGBoost model is further improved by considering a loss function that does
not only depend on the intermediate residuals but also a regularization term that
constrains the complexity of the model thus preventing it from overfitting, i.e.:

L(ϕ) =
N∑
i=1

l(yi, ŷi) +

K∑
k=1

(
γTk +

1

2
λ∥wk∥2

)
(3.7)

where l is a convex loss-function like the Mean Squared Error (MSE) between
the outcome and the predictions, Tk is the number of leaves in the kth tree, wk

are the weights of the tree, while γ and λ are hyper-parameters controlling the
regularization of the tree.

3.2 Neural Networks

NNs have long been state-of-the-art in many fields due to their flexibility and
intuition based on neurons activating and sending information between each
other like in the brain. The NN is built of a number of neurons that are typically
arranged in layers with the input in one end and the output in the other making
it possible for the model to learn increasingly complex patterns. In the ordinary,
artificial NN, each neuron or node calculates an activation by multiplying the
input with a set of weights, adding a bias, and subsequently passing the result
through a non-linear activation function as shown in Figure 3.4. Typical choices
of the activation functions include the sigmoid and tanh functions because their
domain includes the entire real line while their codomain is restricted between
two values that can be interpreted as corresponding to activated, respectively,
not activated.

sigmoid : R→ ]0 , 1[ sigmoid(x) =
1

1 + e−x
(3.8)

tanh : R→ ]− 1 , 1[ tanh(x) =
e2x − 1

e2x + 1
(3.9)

For the output in a classification setting, however, it is typically necessary to
combine the outputs of multiple neurons that each corresponds to a class. This
is usually done using the so-called softmax function. The softmax function can
take in a vector of real values and output a vector with values summing to one,
allowing for probabilistic interpretation of the likelihood for each class.

softmax : RC → {y ∈]0 , 1[C
∣∣ ∥y∥1 = 1} softmax(x)i =

exi∑C
c=1 e

xc

(3.10)

A NN is very flexible and can easily be modified to fit the problem at hand
by stacking different types of layers that each have different properties (these
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Figure 3.4: Illustration of how the information flows through a neuron
taken from [146]. wi corresponds to a weight multiplied onto one of the
input values xi, b is the bias added to the product before passing it through
the non-linear activate function, ϕ.

will be discussed in the following). The overall layout of the network including
how many layers the network comprises and the number of nodes in each is
denoted by the architecture of the NN. A simple example of an architecture is
shown in Figure 3.5 and comprises a single hidden layer of the so-called dense or
fully-connected type, meaning that every node in the layer is connected to every
node before and after it. This is one of the basic building blocks of the neural
network. Multiple of these layers stacked together is sometimes also denoted a
MultiLayer Perceptron (MLP).

3.2.1 Training a Neural Network

Training a NN corresponds to finding the optimal weights in all layers of the
network, such that the whole model accurately explains the dataset. Given a
dataset comprising N observations, x1,x2, . . . ,xN with labels, y1, y2, . . . , yN
and a neural network, fΘ with weights Θ, the problem is given as:

argmin
Θ

L(Θ) where L(Θ) =
1

N

N∑
i=1

l (yi, fΘ(xi)) (3.11)

and where l is the loss function specifically chosen by the user to fit the given
problem. For classification purposes it is customary to use the cross-entropy
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Figure 3.5: The architecture of a simple NN with one dense hidden layer
taken from [146]. The network is built for taking an input with two values
and outputting two values, while the hidden layer has H neurons.

loss given by:

lcross-entropy(yi, ŷi) = −
C∑

c=1

yi,c · log(ŷi,c) (3.12)

where C is the number of classes in the dataset, meaning that the outcome
becomes a vector. Loss function can be modified any many different ways by
comprising e.g. multiple terms or regularization to prevent overfitting. For
regression purposes, the MSE is usually used as in ordinary statistical linear
regression.

During training, the loss function is incrementally minimized by updating the
weights of the network using stochastic gradient descent or other mathematical
optimization algorithms. In other words, the derivate of the loss function is
calculated with respect to the weights of the network, and the weights are up-
dated by e.g. taking a step in the direction of maximum descent (in stochastic
gradient descent):

Θnew = Θold − γ∇L(Θold) (3.13)
where γ is the learning rate specified by the user. Derivatives with respect to
the weights of the different layers are made tractable by repeated application of
the chain rule given by:

h(x) = f(g(x)) ⇒ ∂h

∂x
=
∂h

∂g
· ∂g
∂x

(3.14)

such that the derivative of the previous layer can be calculated using derivatives
and values of the current. This concept of the derivatives being carried backward
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from the output is also used in the so-called backpropagation algorithm. In
backpropagation, the result of a forward pass is evaluated in the loss function.
The derivate of the loss function is numerically propagated backward through
the network estimating derivates along the way. Backpropagation is often used
in practice in tools such as the autograd-package in PyTorch if using Python
for implementation [134].

3.2.2 Convolutional Neural Networks (CNNs)

Concolutional Neural Networks (CNNs) make use the the so-called convolutional
layer. Instead of single neurons with weights and biases, a number of filters or
kernels are convoluted over the input to create the input to the next layer.
Stacking more convolutional layers will allow the model to look for increasingly
complex features in the input. For instance, in an image, the first layer will
look for low-level features such as lines and curves, and later layers will be
able to detect high-level features such as specific objects. The application of
filters allows for the model to consider spatial patterns in an image or temporal
patterns in a time series. This makes the models able to encode more complex
datasets while training filters which are somewhat interpretable [198]. The
ability to train interpretable filters has made these types of layers very popular
for analysis on images [167], videos [145], and time series [64].

The filter is positioned in the image, and an element-wise product2 with the
image is calculated before being summed to arrive at the output. The operation
is visualized in Figure 3.6. Users can specify different hyper-parameters to
control the size of the filter and the size of the output given the input. For
instance, the stride dictates the step size within the image, the dilation dictates
the step size in the input relative to the elements of the filter, and the input
image can be adequately padded with zeros if one wants the same input and
output sizes. The size of the output for any dimension as a function of the
hyper-parameters for that dimension can be calculated using the following:

dout =

⌊
din + 2 · P − δ · (K − 1)− 1

∆
+ 1

⌋
(3.15)

where P is the padding, δ is the dilation, K is the kernel size, and ∆ is the
stride. Filters can be appropriately initialized to be applied to any number of
dimensions and channels in the input, while it is customary to train multiple
filters able to look for different features in a single convolutional layer which will
correspond exactly to the number of channels in the output.

2The elementwise product is conducted over all dimensions including the channel dimension.
Specific for the channel dimension in the filter, though, is that its size has to equal the number
of channels in the input
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Figure 3.6: Illustration of a simple convolution on an image taken
from [146]. The filter, K is applied to the input, X to calculate the out-
put, Y. The filter is positioned in the input image and the weights of the
filter are multiplied with the image values element-wise before the result
is summed and the output calculated. Appropriate padding (grey zeros)
is added to make the output the same size as the input. Notice that the
same filter is applied to the whole image and that it is customary to have
multiple filters resulting in multiple output images (or channels).
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Convolutions can also be slightly adjusted to work in the opposite direction, i.e.
working to generate the input based on the feature map. This is challenging since
convolutional layers often shrink the temporal or spatial dimensions. It can,
however, be achieved by so-called transposed convolutions that also go by the
names deconvolutions or fractionally-strided convolutions [51]. This operation is
designed to reverse the ordinary convolution by choosing appropriate parameters
in order for the original size of the input to be restored. This might require
zeros additionally padded between rows and columns to reverse a stride higher
than one. Deconvolutions are often used in AutoEncoders (AEs) as part of the
decoder in an encoder-decoder architecture for unsupervised modeling. In an
AE, the decoder attempts to reconstruct the input from a latent representation
obtained by the encoder through a bottleneck layer.

3.3 Normalizing Flows

The Normalizing Flow (NF) is a recent framework for generative or probabilistic
modeling, which means that it seeks to estimate the density of the input data
space while allowing for subsequent sampling from it.

In an NF, the density of the input distribution is modeled by applying a sequence
of invertible transformations, f1, f2, . . . , fK , to a well-known base distribution,
such as the Gaussian, denoted p0 (samples are represented by z0). Applying
each of the transformations one by one will turn this distribution increasingly
complex ending up with pk modeling the desired input distribution (with sam-
ples zk = x). Ensuring the invertibility of the transformations enables both
sampling directly from the input space (by sampling in the base distribution
and passing it through the transformations) and also calculating tractable and
exact probabilities using the change-of-variable formula, known from probability
theory:

pY (y) = pX(x) ·
∣∣∣∣∂x∂y

∣∣∣∣ where y = g(x)⇔ x = g−1(y) (3.16)

For transformations zi = fi(zi−1) that follow distributions zi ∼ pi(zi), the the
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Figure 3.7: Illustration of the NF framework taken from [192]. The se-
quence of transformations, f1, f2, . . . , fK incrementally transforms the base
distribution, z0 (Gaussian) into increasingly complex distributions ending
in zK modeling the input data space.

density of an observation x = zK can be calculated as:

pK(zK) = pK−1(zK−1) ·
∣∣∣∣det ∂zK−1

∂zK

∣∣∣∣ (3.17)

= pK−1(zK−1) ·
∣∣∣∣det ∂fK(zK−1)

∂zK−1

∣∣∣∣−1

(3.18)

= pK−2(zK−2) ·
∣∣∣∣det ∂fK−1(zK−2)

∂zK−2

∣∣∣∣−1

·
∣∣∣∣det ∂fK(zK−1)

∂zK−1

∣∣∣∣−1

(3.19)

... (3.20)

= p0(z0) ·
K∏

k=1

∣∣∣∣det ∂fk(zk−1)

∂zk−1

∣∣∣∣−1

(3.21)

which means that if all the transformations are easily differentiable, only the
density in the base distribution, p0, is needed. This is one of the main advantages
of NFs over other probabilistic models. The simplicity of the framework enables
exact and tractable calculation of densities rather than having to estimate a
proposal distribution by optimizing the Evidence Lower Bound (ELBO) as is
the case for e.g. Variational Auto Encoders (VAEs) [89] and other types of
variational inference [40].

3.3.1 Invertible transformations

One of the main challenges of the NF is how to choose the sequence of transfor-
mations so that they are flexible and able to learn complex patterns, while still
being invertible. One way of doing this was proposed by Dinh et al. in 2017
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Figure 3.8: Illustration of both directions of the coupling layer proposed
by Dinh et al. in [48]. In the forward direction (top), the top part of the
image is used to scale and translate the bottom part. In the backward
direction (bottom), the scaling and translation are reversed using the en-
coded image.

and was part of popularizing NFs as a framework [48]. The authors proposed
using so-called coupling layers as their transformations. In a coupling layer, the
input is split into two parts whereof one is encoded to be exactly itself using the
identity operation, while also being used to calculate a scaling and a translation
applied to the other part. Let x and y be the input, respectively, the output
of a coupling layer, and let D be the size of the input. Given a d < D, the
coupling layer is defined to be:

y1:d = x1:d (3.22)
yd+1:D = xd+1:D ⊙ exp (s(x1:d)) + t(x1:d) (3.23)

where ⊙ is the element-wise product, and where s and t calculate a scaling,
respectively, translation that is applied to the second part of the input given
the first. Defining the transformation in this manner makes it easy to reverse
the process since the scaling and translation values can be recovered by applying
the s and t to y1:d and subsequently reversed as illustrated in Figure 3.8. In
reality, images are not divided as shown in the figure but rather divided along
the channel dimension (for multiple channels) or using a checkerboard pattern
in the spatial dimensions. Also, it is ensured that two sequential coupling layers
do not encode the same part of the input, such that the whole observation
is modified after a sequence of a few coupling layers has been applied. An
example of the output of each of the coupling layers from an NF with 20 coupling
layers trained on the simple synthetic two-dimensional “Two moons” dataset



3.3 Normalizing Flows 41

Figure 3.9: The evolution of the synthetic two-dimensional “Two Moons”
dataset as it is sequentially transformed using an NF. The model is trained
alternately modifying each of the two dimensions with the other. The red
point is added to show the evolution of a single point.

from scikit-learn( [136]) is shown in Figure 3.9. The model is trained by
alternating between modifying each of the two dimensions with the other. This
is somehow visible, as it seems that the latent data points are paired from the
perspective of one of the axes.

Another advantage of the coupling layer is that the derivatives of s and t are
not needed when calculating the derivate of the whole transformation. In fact,
the Jacobian of the transformation is given by:

∂y

∂x⊤ =

 ∂y1:d

∂x⊤
1:d

∂y1:d

∂x⊤
d+1:D

∂yd+1:D

∂x⊤
1:d

∂yd+1:D

∂x⊤
d+1:D

 =

[
Id 0

∂yd+1:D

∂x⊤
1:d

diag(exp (s(x1:d)))

]
(3.24)

which means the derivate only depends on the scaling functions (and not its
derivative). This means that both s and t can be chosen to be arbitrarily
complex functions allowing for the use of e.g. NNs.
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Chapter 4

State-of-the-Art

In this chapter, relevant recent advancements that have paved the way for the
research presented in this thesis will be briefly discussed. Emphasis will be
put on anomaly detection in broadband networks and representation learning
in time series, as these are both important topics for the development of our
work.

First, the state of the art in outlier/anomaly detection in HFC networks will be
explained, highlighting the common problems that authors have faced and their
proposed solutions.

Second, different approaches to learning representations in time series will be
discussed, demonstrating the many different approaches that can be taken to
this problem. Mainly approaches that apply some kind of NN as part of their
model will be discussed.
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4.1 Faults in Broadband Networks

Broadband networks are well-studied and because the HFC technology has been
and still is an important part of the digital infrastructure, multiple societies have
been created that work with them. These include Society of Cable Telecommuni-
cations Engineers (SCTE), International Society of Broadband Experts (ISBE),
and National Cable Television Association (NCTA) that work together in de-
veloping broadband network design, implementation, and operation. However,
much of this research uses the FBC data and not the time series data gathered
remotely by the ISPs, also sometimes referred to as SNMP data. Due to the
FBC data requiring special equipment to read it on site, this makes it a great
tool for technicians when troubleshooting at a given customer’s premises, but
not appropriate for remote collection and storing. Along with the complex na-
ture of the HFC network, this makes it hard to detect problems proactively and
has resulted in this problem not having been studied in much detail. This is
partly due to the limited knowledge of how different errors specifically affect
the remotely gathered metrics and because many faults have different levels of
severity. Another reason for the limited research stems from the characteristic
essence of both network owners and customers. Due to their business model, net-
work owners are usually reluctant to repair issues that do not cause immediate
problems for the customers. Additionally, customer calls are not directly corre-
lated with the quality of the signal but rather human aspects such as patience,
availability, and whether or not they are used to a bad signal [33, 77, 130].

In this section, a brief introduction to previous approaches to detecting fault
in HFC networks will be given. First, the methods using the FBC data will be
presented followed by the methods using remotely gathered data.

4.1.1 Fault Detection Using Full-Band Capture Data

Because the FBC data includes real-time power measurements for each fre-
quency at specific time points, it provides detailed information about current
signal issues. This data can even be used to classify different types of problems.

Especially CPD is a type of error that is well-understood and investigated. In
2004, Thomas H. Williams submitted a patent for a method of detecting CPD
using FBC data [194]. Williams tested his method by introducing artificial CPD
errors into a network and observing how this error would affect the signals. He
claims that his method can be used as long as one has a spectrum analyzer and
that it can even be used to estimate the distance to the source of CPD.
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Figure 4.1: Taken from [203]. A snapshot of receiver MER measurements
(y-axis) from a range of carrier frequencies (x-axis). Two types of errors
are present in the plot. The red regions correspond to ingress, i.e. noise
entering the signal at these frequencies. The green region shows a so-called
spike anomaly.

Zhu et al. (2020) used a manually labeled dataset where each observation con-
sisted of a snapshot of the receiver (DS) MER values for all subcarriers (frequen-
cies) [203]. Each observation was labeled according to at which frequency bands
there were faults present. Additionally, for each fault, a label corresponding
to one of five different types of physical-layer anomalies typically seen in FBC
data was also given. Figure 4.1 shows an illustration of the receiver MER mea-
surements as a function of carrier frequency with two different types of errors
marked. This dataset allowed the authors to train a supervised model using a
one-dimensional CNN able to both detect and classify the error.

Gibellini & Righetti (2018) made an unsupervised attempt to detect ingress,
which is when outside noise is introduced into the signal [65]. The authors
claim that ingress is happening simultaneously with signal leakage1, why the
detection of ingress can lead to the detection of leakage in the network. Their

1Signal leakage is often due to a connector not allowing the signal to traverse freely due to
it being loose or rusty.
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dataset consists of snapshots of FBC data that each consists of signal power
measurements for a range of carrier frequencies. The authors use k-means clus-
tering to cluster the snapshots with similar behavior. They claim that a few
clusters will explain a big part of the variation and that some of the clusters will
correspond to the presence of ingress. They achieve promising results, but end
up stating that more work is needed for their approach to be fully functional.

4.1.2 Remote Fault Detection

Though FBC data seems to be good for detecting faults in the networks, it is
inconvenient due to the vast amount of data and the manual labor required to
gather it. Meanwhile, the remotely gathered data enables viewing the bigger
picture in time i.e. looking at temporal data from many different modems at
once. As mentioned earlier, one of the main challenges with this approach is
the missing ground truth as customer calls or trouble tickets are not considered
a reliable indicator for errors in the network. Authors tackle this problem in
different ways.

Hu et al. (2020) attempted to use trouble tickets as hints instead of as a ground
truth [77]. They did this by defining so-called ticketing rate ratios. Given a
set of time windows from a number of modems they would consider the mean
rate of tickets that come in for all of these windows. They would use this to
find smart thresholds for the parameters. For a given parameter and threshold,
they would identify in which time windows this parameter is exceeded across all
modems. This results in two groups of time windows. One where the parameter
is exceeded and one where it is not. They calculate the ticketing rate in each
of the two groups and subsequently the ratio between the ticketing rate in the
group where the parameter is exceeded to the rate in the other group. A high
ticketing rate ratio means that the rate of trouble tickets coming in when the
parameter is exceeding the threshold is significantly higher than when it is not.
See Figure 4.2 for an illustrative example. Even though the method seems to
work well and can be used even on running statistics of the parameters like the
variance, the method cannot be used to train a more complex model and thereby
take into consideration for instance the context. The method can, however, be
used to validate a model trained differently, of course, given that trouble tickets
are available.

Other authors have presented approaches based on hard thresholding of rele-
vant parameters. In 2017, Dr. Franklin Lartey presented a set of scorecards
that could be used to assess the performance in a network based on values of
different parameters. Lartey developed these scorecards based on expert knowl-
edge of how the HFC network works. Lartey does, however, state that these
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Figure 4.2: Illustration of the intuition behind the ticketing rate ratios.
The threshold (red line) is chosen such that the windows where it is suc-
ceeded (red) areas have a higher ticketing rate ratio than the rest of the
time series.

scorecards still require manual labor and that the method requires continuous
developments as the complexity of the HFC technology increases as new im-
provements of it are deployed. In 2019, Rupe & Zhu proposed a platform for
proactive operations, basically automating the method proposed earlier with a
platform that is customizable for the individual ISP.

Heiler et al. (2022) would use trouble tickets in a supervised manner by extract-
ing the tickets leading to a technician being dispatched to fix an actual problem
in the network [71]. They would analyze the corresponding technician notes to
extract the problematic amplifier as identified by the technician. The authors
aggregated all data below the last-line amplifiers (the last layer of amplifiers
to which the customer modems are connected) to create a (highly unbalanced)
dataset with labels based on the extracted problematic amplifiers. As a base-
line model, a simple business rule is implemented based on years of knowledge
of domain experts. The authors evaluate multiple ML models and compare
them to the baseline model. These include logistic regression, Lightgbm which
is a gradient-boosted tree, and different time series-oriented variations of NNs.
Heiler et al. conclude that deploying ML models improves the detection per-
formance more than 2.3 times over the baseline and that this can be used to
optimize troubleshooting time for technicians.

Multiple approaches using big-data platforms have also been investigated. In
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2021, Simakovic & Cica (2021) proposed detecting hard failures (failures with
a total loss of connectivity) by looking at the overall number of online users
at a given time. Sudden drops in this number could indicate a bigger problem
needing immediate action from the ISP [173]. In 2022, Simakovic et al. improved
this big data platform by investigating more significant features that could be
used to surveil the performance of the network overall [172]. These included
features like the average SNR and power values in the DS signal.

4.2 Representation Learning for Time Series

Because Representation Learning (RL) techniques are mostly unsupervised, the
challenge is to extract valuable representations that are intuitive and inter-
pretable while not having access to labels. RL for time series have not been
studied as well as for other types of data–maybe due to the fact that in well-
studied fields like image and text analysis, the representations and the data itself
are much easier to interpret as a human. Recently, some interesting research in
the field of time series RL has been conducted. A short introduction to some of
these works will be given in the following.

4.2.1 Encoding Relevant Temporal Information

There are many ways of considering the context of a time series. Traditionally,
this is exactly what the Recurrent Neural Network (RNN) was designed to do,
being able to memorize previous values when evaluating a new time point. A
few authors have made use of this for time series RL.

Malhotra et al. (2016) proposed using an RNN in an encoder-decoder frame-
work to learn the normal behavior of the time series, making the hidden state
of the RNN a latent representation of it [113]. The RNN setup also allowed
the authors to encode sequences of different lengths. Figure 4.3 shows their
framework. Malhotra et al. furthermore proposed using the reconstruction er-
ror as an anomaly measure and showed promising results in detecting anomalies
on a range of datasets. In 2017, the proposed idea was further developed and
turned into a generic and off-the-shelf pre-trained feature extractor by training
their model on a diverse set of time series datasets [114]. The authors claim
that the latent representations resulting after applying their feature extractor
to any time series dataset will significantly enhance the downstream tasks such
as classification.
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Figure 4.3: Taken from [113]. Illustration of the encoder-decoder archi-
tecture using an RNN. The model is using the input {x(1), x(2), x(3)} to
predict of reconstruct {x′(1)x

′(2)x
′(3)}.

Other authors made use of different encoders to extract the latent representa-
tion. Hyvärinen & Morioka (2016) simply used an MLP (a simple artificial NN)
along with a multinomial linear regression to encode the time series [80]. The
input time series would be divided into chunks each given a label corresponding
to the chunk segment index. The MLP would be trained to encode a latent
representation that could be used to classify each of these chunks according to
this segment index.

Lei et al. (2019) used matrix factorizations to encode the time series by mak-
ing sure that the Dynamix Time Warping (DTW) distances between any two
different time series stay close [100]. That is, minimizing:

min
X∈Rn×d

∥A−XX⊤∥²
F (4.1)

where A is the n× n DTW distance matrix between the individual time series
in the dataset and ∥ • ∥F is the Frobenius norm. The authors utilize that this
problem has a closed-form solution to derive the latent representation of length
d that can be chosen small. Since the DTW algorithm can calculate distances
between any two time series of equal or unequal length, the method similarly
works on time series of arbitrary length. However, as the method is intended to
be used for clustering and is designed to preserve distances, not much effort is
put into making the latent representations interpretable.

4.2.2 Convolutional Neural Networks for Feature Extraction

Recently, CNNs have been shown to be state-of-the-art in many different tasks
related to time series and they have also found their way into the task of ex-
tracting latent representations from them.

Franceschi et al. proposed using casual dilated convolutions to learn scalable
representations of multivariate time series [64]. The authors utilize the fast
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Figure 4.4: Illustration of the encoder proposed by Franceschi et al.
in [64]. The algorithm consists of a sequence of convolutional blocks (b)
in which the same dilation parameter is used in two 1D convolutions, each
followed by weight normalization and leaky ReLU. The dilation parameter
will increase exponentially with the depth of the network. The convolu-
tions are designed to always output the same length by adding appropriate
padding to learn representations given prior periods of varying lengths.

evaluation of the convolution to learn the representations and make the con-
volutions causal by never including future time steps in the evaluation of a
convolution. The proposed encoder is illustrated in Figure 4.4 and consists
of a number of convolutional blocks as depicted in (b). The dilation param-
eter is increased exponentially with the depth of the encoder (the number of
consecutive convolutional blocks) to have convolutions looking at prior periods
of increasing lengths and increasingly universal. Franceschi et al. propose to
train the model contrastively using a novel triplet-loss scheme inspired by that
of Word2Vec [120]. They make triplets by taking a random sub-series from a
given time series to be the reference. They then produce a positive sample by
sampling a sub-series from within the reference, and a negative sample by taking
a (set of) random sub-series from a random time series in the dataset including
itself, if it is long enough and does not have a stationary behavior. The process
of producing triplets is illustrated in Figure 4.5. The authors claim that their
algorithm learns representations that are “universal and easy to make use of”
due to the random nature of the sampling strategy while showing promising
results in time series segmentation by clustering the latent representations of
the electricity consumption of a house into meaningful periods.
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Figure 4.5: Illustration of the strategy used by Franceschi et al. to pro-
duce triplets for learning contrastive representations of time series [64]. The
blue sub-series is the reference, while the green (a sub-series of the blue) is
a positive sample, and the red sub-series is a negative sample. The triplet
loss used in the algorithm will strive towards giving the green and the blue
similar representations, while the red and the blue will have dissimilar rep-
resentations.

Eldele et al. proposed learning representations using one-dimensional convolu-
tions by forcing the learned representations to be contrastive both in terms of
time and context [53]. In other words, the authors wanted the representations
to be robust in time, and discriminative in terms of which time series a given
representation stems from. These assumptions are good if the time series is
rather stationary (a single outcome for the whole series). The authors proposed
to make the representations discriminative and robust in time by making two
different augmentations of the same input; a weak augmentation that is sim-
ply scaling and adding some noise, and a strong augmentation in which they
divide the time series and make a random permutation of it. After encoding
each of these augmentations using the same encoder, a transformer is used to
compute a context vector. These context vectors are subsequently each used to
predict the encoding of the other augmentation while being forced to be similar
to each other. The whole process is visualized in Figure 4.6. Later, the same
authors extended this approach to be class-aware thus enabling self-supervised
training [52].

Challu et al. (2022) proposed using hierarchical latent variables for their deep
generative model to be used for time series [27]. The authors would divide the
time series into chunks of equal lengths and tie an element of the latent variable
to a number of consecutive chunks based on its position in the hierarchy. This
means that the element with the lowest position would typically be tied to just
one chunk, while higher-positioned elements would be tied to a longer sequence
of chunks (see Figure 4.7 for an example). These latent variables would first be
sent through a state model, F , and subsequently, a generator model based on one-
dimensional convolutions that would reconstruct the chunk of the time series.
During training, Monte Carlo Markov Chain (MCMC) sampling is applied to



52 State-of-the-Art

Figure 4.6: The architecture proposed by Eldele et al. in [53] to learn
time series representations that are discriminative and robust in time. The
encoder is a sequence of simple 1D convolutions. In the temporal contrast-
ing module, each of the embeddings of the augmentations will be used to
calculate a context vector cst by applying a transformer layer. These con-
text vectors are used to attempt to predict the embedding of the other.
The context vector is also sent through a non-linear projection head, max-
imizing the similarity between contexts from the same time series.



4.2 Representation Learning for Time Series 53

Figure 4.7: Taken from [27]. Illustration of how the elements of the latent
vectors zl

i are tied to a number of chunks of the time series Yi with l being
the level in the hierarchy. In this example, the elements of the first level are
each tied to only one chunk, while the third level element is tied to all six
chunks shown in the example. F is the State model and G is the Generator
model.

find the optimal set of latent variables describing the data. While showing
promising results, the authors claim that their approach has several advantages
over existing methods with shorter training times, superior performance, and
being more robust to missing values.

4.2.3 Interpretable Latent Representations

As with some of the methods mentioned in the previous section, latent repre-
sentations are often allowed to live in the continuous space thus being hard to
interpret. Some authors have attempted to make latent representations that
are interpretable by humans requiring the representations to be discrete.

Van den Oord et al. proposed a framework for learning discrete representations
of the dataset based on vector quantization. They would do this by first defining
a set of embeddings e1, e2, . . . eK that are allowed to live in the continuous space
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Figure 4.8: Taken from [188]. Illustration of the framework proposed by
Van den Oord. et al. based on a VAE where the encoded value of the input
will be linked to the nearest latent variable in the embedding space. This
embedding will then be used to reconstruct the input. As illustrated by
the red arrow, gradients are simply copied from the embedding zq(x) to the
encoding ze(x) during training.

and each corresponds to a latent variable. They then apply a VAE in which
the encoder will be trained to link an input to one of these latent variables
determined by the nearest neighbor in the embedding space:

zq(x) = ek where k = argmin
j
∥ze(x)− ej∥2 (4.2)

The decoder will be trained to reconstruct the input using the embedding of the
corresponding latent variable. Notice, that the values of the embedding vectors
are also updated during training. The framework is illustrated in Figure 4.8.
The authors additionally show promising results on audio and video data and
claim that long-term information can be preserved in the latent variables.

Fortuin et al. proposed learning discrete, temporal representations of time se-
ries by combining VAEs, Self-Organizing Maps (SOMs), and probabilistic mod-
els [63]. The authors use SOMs to discretely approximate the embeddings given
by the encoder which can be chosen arbitrarily. They then use a Markov model
to approximate the transition probability from one discrete representation to
another in the latent space to learn smooth representations in time. In the end,
a decoder will be used to reconstruct the input. The whole process is illustrated
in Figure 4.9.
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Figure 4.9: Illustration of the algorithm proposed by Fortuin et al. in [63].
The proposed algorithm makes use of the encoder-decoder structure from
VAEs, the ability to smoothly transform continuous variables into discrete
from SOMs, and Markov models to represent transitions in time. In the
example in the Markov model, the output of the encoder zte will have em-
bedding ztq because it is the closest SOM node. The next time-point has
encoding zt+1

e and embedding zt+1
q . The Markov model will be trained to

accurately reflect the transition from ztq to zt+1
q
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Chapter 5

Data

The data used in this thesis is mainly based on the real-world network of TDC
NET. In the network several performance metrics are polled approximately every
15 minutes1 as described in section 2.2.2.3. Additionally, identification and
topology data have also been made available, linking each modem to a position
geographically and in terms of network connectivity (topology). In this section,
an overview of the data made available to this project will be provided and the
preprocessing steps used for time series data will be explained in detail.

1Other ISPs or network owners might use different adjourn times
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5.1 Data Overview

Datasets that have been made available by TDC NET for this research are
extensive and include multiple different data modalities. The following provides
a brief overview of the data made available to this research.

Static reference data
Data that is not assumed to change2, such as identifiers, and how the different
components are related to each other at a given time. Variables include:

• Location (coordinates) of devices in the network (customer modems, net-
work amplifiers or splitters, CMCs)

• Identifiers for the components (e.g. Media Access Control (MAC)-addresses
for modems and identifiers for amplifiers or CMCs)

• Topology data

– To which CMC the modem is connected
– The sequence of amplifiers that connects the modem to its CMC

Time series data
Different metrics from each of the Customer Modems (CMs) were measured
remotely approximately every 15 minutes due to the vast amount of data gath-
ered in the network. Some metrics are reported as a statistic (e.g. minimum
or maximum) during the last poll cycle for a given channel (corresponding to
a range of transmission frequencies), while others are ever-increasing counts of
specific events. Many of the parameters are calculated independently for the
DS and US signals, hence the data includes performance metrics on both types
of signal. Some of the metrics gathered from the modems are:

• Modulation Error Ratio (MER) – Ability of the receiving end (modem
or CMC to demodulate the signal

• Signal-to-Noise Ratio (SNR) – How good the path between the two
ends is at transmitting a signal

• Package loss rate – How many of the transmitted packages were lost
during transmission

2It could, however, change when customers move to a different house, cancel their sub-
scription, and so on.
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• Codeword errors – How many of the codewords received had to be cor-
rected (by error correcting codes)

• Jitter – The variation of how long it takes a packet to be transmitted

The full list of metrics used in this project along with explanations is given in
section 8.A. Figure 8.2.1 shows an example of some of the time series metrics
plotted in time.

It is important to mention, that far from all the modems in the network have
both time series and topology data provided. For around 1/3 of the modems
in the network of TDC NET, the complete sequence of amplifiers connecting
the modem to the CMC is not known. To properly train the various models,
effort has been put into securing a high quality of the data that was extracted,
which includes extracting only data and topology data from modems that have
both available. This is under the assumption that a subset of the modems
connected to a CMC will themselves constitute a network. In other words,
removing some of the modems from a network does not affect the remaining
modems significantly thus analysis can still be carried out.

5.2 Time Series Preprocessing

Time series data gathered from multiple sensors or modems, as in our case, pose
a few challenges that must be addressed before they can be effectively analyzed
and compared.

5.2.1 Aligning Time Points

All observations include a precise time at which it was polled. Different sensors,
though connected through the same network, are not always polled at the same
time meaning that a scheme for aligning the time points must be deployed to
make them directly comparable. Additionally, though modems are expected to
be polled with exactly 15 minutes between this is not always the case.

We align the time points by assuming that there are exactly 15 minutes between
each poll and that all devices in the network (be that modem or CMC) are polled
simultaneously. This enables us to generate a new sequence of time points
with exactly 15 minutes between each point. Now it remains to align this new
sequence with the old time points in an optimal way to be used for subsequent
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interpolation of the observations. Acknowledging that the CMC measurements
are likely to be compared to the measurements for all of the modems, we align
the new time point sequence to that of the CMC.

Let t = [t0, t1, . . . , tT ] be the sequence of time points at which the CMC has
been polled. We then calculate the distances from t0 to each of the time points
in the vector:

td = t− t0 (5.1)

We then calculate the modulo of each of these distances concerning the 15
minutes we assume are between each:

tr = td mod 15minutes (5.2)

The remainder vector is centralized by making sure to have no values outside
the range from −15

2 to 15
2 by defining the centralized vector t′r with elements:

t′ri =

{
tri if tri > 15

2

tri − 15 otherwise
(5.3)

We then calculate the median of these deviations to get the overall offset that
is optimal for our new time point sequence:

∆ = med(t′r) (5.4)

This allows us to calculate the optimal time point sequence to be used for
interpolation:

t∗ =
{
t0 +∆+ i · 15

}T
i=0

(5.5)

Given a time series with values x0, x1, . . . , xT with corresponding time points
τ0, τ2, . . . , τT . We define the linear interpolator to be the piecewise linear func-
tion given by:

f(t) =


x0 + (t− τ0)x1−x0

τ1−τ0
if t ≤ τ1

x1 + (t− τ1)x2−x1

τ2−τ1
if τ1 < t ≤ τ2

...
xT−1 + (t− τT−1)

xT−xT−1

τT−τT−1
if t < τT−1

(5.6)

This means that the interpolated vector used for further analysis is simply this
function evaluated for every value in t∗:

[f(t∗0), f(t
∗
1), . . . , f(t

∗
T )] (5.7)

With corresponding time points in t∗. An illustration of the time point align-
ment algorithm is shown in Figure 7.5.
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5.2.2 Missing Time Points

Since the whole network consists of a large number of modems it is inevitable
that some of the modems have missing time points momentarily or during long
periods. This could be due to many reasons like the modem having been turned
off by the user, impaired connections too bad for any transmission, or damaged
cabling due to construction works. For the deep NN models to properly work,
these need to be imputed.

Many ways of imputing missing observations in a time series exist. A subset of
these has been thoroughly analyzed and compared with respect to their perfor-
mance. This was done by manually removing random time windows of varying
lengths from a set of time series with no missing values. Among the tested
methods were Akima Spline interpolation [3], and ordinary linear interpolation
of which the latter showed the best results across all different lengths of missing
windows of observations, hence is chosen to be the method of interpolation used
in this project. We apply a method similar to the one presented in the previous
section making the interpolator on the known points and evaluating it at the
missing time points inferred from the assumption of 15 minutes between time
points.
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Part II

Research Outcomes





Chapter 6

Summary and Perspective of
Research

In this chapter, a general summary and discussion of the research carried out
as part of this thesis will be given. Though all of the work concerns itself with
extracting useful information from multiple time series, this has been done with
one overall goal in mind, namely anomaly detection or localization of faults in
the HFC network. Meanwhile, consulting the literature and investigating the
state of the art in network monitoring it is clear that many authors list a fully
known and updated network topology as a requirement for proper maintenance
or anomaly localization [97, 174, 71, 173, 77]. Remote localization is especially
important for optimal routing which could help prevent unnecessary driving
which is one of the overall goals of our project. For these reasons, another
subgoal of this research has been to infer the missing topology of the HFC
network using monitoring data from the customer nodes. Meanwhile, for the
work carried out in the other papers we have assumed that the topology of the
network is fully known and up to date, making us able to utilize it in the model
to localize the fault.

In section 6.1 papers A and B will be introduced and discussed. Each of these
deal with a different way of detecting faults in broadband networks. In sec-
tion 6.2 paper C will be discussed which deals with the extraction of useful
events for topology reconstruction in rooted trees.
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6.1 Anomaly detection in time series

As described in section 4.1, many of the methods developed to detect and classify
errors in the HFC network are based on FBC data making them great tools for
technicians to use in the field but which are not practical for remote detection
due to the immense amount of equipment needed to gather the data and the
space needed to store it. Therefore methods for detecting anomalies using the
aggregated time series data explained in chapter 5 will be of great value and
thereby the main aim of this thesis. We propose two different approaches to
anomaly detection in HFC networks based on, respectively, a supervised method
trained on a dataset labeled by domain experts and an unsupervised method
based on NFs which is a recent framework for deep generative modeling used
for accurate and tractable modeling of densities of complex distributions.

6.1.1 The supervised approach

One of the most common errors occurring in HFC networks is the so-called
CPD which is the product of an impaired connection where rust or a loose
connector prevents the signal from traversing freely causing noise in the signal.
This type of error is generally well-studied and well-known enabling the creation
of a manually labeled dataset [164].

Paper A – SeePD: Detecting Common Path Distortion Faults in
Broadband Networks

In cooperation with domain experts, we propose the Broadband Common Path
Distortion dataset (BoCPaD) consisting of 655 observations where each obser-
vation consists of the time series from a set of modems located topologically
beneath a given amplifier and a label denoting the presence or absence of CPD
at the given amplifier (topology is assumed known). We investigate different ap-
proaches to performing feature engineering on the observations, converting the
(different amount of) time series into a fixed number of features for subsequent
modeling. We investigate different ML methods and report their performance
in distinguishing between the presence and absence of CPD. For the optimal
model, we report the feature importance making us able to propose a simple
’business rule’ based on thresholding on the two most important features. This
proposed business rule enables ISPs to choose between the better-performing,
but unintuitive to interpret model or the model that is easier to implement and
interpret while reaching similar performance.
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The proposed dataset is limited in size but it is believed to be representative
of the general behavior concerning CPD. The dataset ends up showing great
potential for modeling the distinction between the presence and absence of CPD
meaning that gathering a bigger dataset in the same way or gathering a dataset
using an HFC laboratory in which all parameters and traffic could be fully
controlled would be of tremendous value for ISPs. This could also allow for
modeling the effect of CPD of various degrees while investigating the stationary
network parameters such as the number of modems connected to the local node
or the length of the cables.

6.1.2 The Unsupervised Approach using Normalizing Flows
for Multivariate Time Series

Even though some of the most frequent errors occurring in HFC networks like
CPD examined in the above-mentioned paper are well studied, not much is
known about how other types of errors manifest themselves in the remotely
monitored data to be used in this project. This type of data is abundant with
data points including a long range of metrics being gathered at every single
online modem in the network every time data is polled. In the case of TDC
NET that amounts to around 58 mio. observations of each recorded metric
every single day. However, no accurate indication of the presence, respectively,
absence of errors exists. TDC NET does have records of the faults reported
by customers that lead to a subsequent technician dispatch but as explained
in section 4.1 this is not believed to be a precise measure for the presence of
errors. One idea could be to simply use the trouble tickets that TDC NET does
have in a supervised manner, acknowledging that a good model would lead to a
large number of false positives that were actually true positives. However, even
though such a model would work well, we would have no way to verify that it
truly works.

Instead of considering only the distinction between errors and non-errors, it
would be more valuable to quantize abnormal behavior and try to understand
the underlying reason for this behavior. This could e.g. be achieved by clustering
different instances of abnormal behavior that show similar trends. These clusters
could subsequently be related to actual root causes in the network in cooperation
with domain experts. Estimating the distribution of time series behavior is a
very recent problem, hence not much research exists. However, two recent papers
both make use of NFs to estimate the density of time series behavior. Dai &
Chen made use of graph convolutions and an RNN to summarize the historical
and inter-sensor contexts and use that to estimate the conditional density of a
single observation using an NF [39]. Guan et al. also estimated the conditional
density of a single observation using an NF but this time using an aggregation
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of historic data and a positional encoding as the conditional [68]. Even though
both of these methods achieve promising results, the conditional nature makes
post-hoc analysis of the underlying errors hard.

Paper B – Anomaly Detection in Broadband Networks: Using Nor-
malizing Flows for Multivariate Time Series

In paper B we estimate the density of a window of a multivariate time series
by first producing a latent vector representation of it using an AE. We assume
that it is sufficient to learn an AE once and use its resulting latent variables
as accurate representations of the data. We base the AE on one-dimensional
convolutions in order to preserve the context in the embeddings. Using an
AE instead of a Variational AE allows the latent representations to constitute
a more accurate distribution that is not forced to be continuous like it is in
the variational case. The density of this resulting complex and non-continuous
distribution is then estimated using an NF in an appropriate way. This two-
phase approach means that we have three different representations of the input
time series data:

1. The original time series window of size ω×∆ where ω is the length of the
window and ∆ is the number of input parameters

2. The latent representation vector of size δ encoded using the AE where δ is
the predetermined size of the latent representation. The density of these
vectors is estimated using the NF.

3. The normalized representation vector of size δ which is the correspond-
ing value after the above latent vector has been transformed (backward)
through the sequence of functions of the NF. These vectors will follow
a simple δ-dimensional Gaussian distribution and, hence have densities
accordingly.

The paper presents very promising results, demonstrating that the learned den-
sity of the latent representations (the second representation in the list) is a good
indicator of outlyingness. The paper furthermore proposes an algorithm based
on bootstrapping for linking densities learned by the NF, which are often hard
to interpret due to the discontinuity in the space, to a p-value by estimating the
Cumulative Distribution Function (CDF) of the one-dimensional distribution of
densities. Given that the NF learned an accurate representation of the distribu-
tion, this p-value estimates the probability of observing the given observation or
an observation that is less likely thereby enabling interpretation of the density
in a statistical context.
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6.1.2.1 Learning Only the Systematic Behavior

Since the NF is modeled on the data including outliers and it is not known
which observations are outliers, it is assumed that outliers are few in number
and hence fall into low-density regions of the learned distribution. If on the other
hand, one wishes to model the distribution of only the systematic behavior, it
means that the outliers will be modeled as Out-Of-Distribution (OOD) points.
In paper B we propose to do this by taking advantage of the two-phase nature
of the algorithm which means that we can learn the NF, constituting the second
phase, multiple times but weighing the observations differently each time. We
propose an algorithm that iteratively down-weighs observations that fall in low-
density zones thereby slowly excluding the unlikely observations. The paper
presents promising results by showing that the normalized representation (third
representation in the above list) of the outlying observations is pushed away
from the high-density bell curve (that follows a Gaussian distribution) in the
center, making the Mahalanobis distance in the normalized space an increasingly
better predictor for outlyingness. Furthermore, the observations that are pushed
away from the bell curve in the center seem to arrange themselves in clusters
along with other observations showing similar behavior. These clusters can
subsequently be related to an underlying problem that, in cooperation with
domain experts, can be connected to an actual root cause.

All in all this work shows great potential but is still in the preliminary phase.
Future work entails proving the method on a high-quality multivariate time se-
ries dataset with underlying root causes that are well-understood. Additionally,
more complex models can be employed in both phases of the framework. For
example, an enhancement to the model could involve using an autoencoder (AE)
that learns representations across different scales. This would allow behaviors of
varying lengths or characteristics to be encoded into the latent representation.

6.2 The missing topology

Although many authors working with HFC networks list a fully known and up-
dated topology as a requirement for proper maintenance of the network, not
much literature exists that deals with this problem. According to domain ex-
perts at TDC NET, it has previously been possible to modify the signal trans-
mitted to a group of modems for a short period of time by e.g. dampening
the amount of amplification for a specific amplifier and then observing which
modems were affected by this modification. This is, however, not believed to be
feasible using the newest technology (DOCSIS 3.1), as modems are vulnerable
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Figure 6.1: Illustration of the topology reconstruction problem. Blue
circles are customer modems, the green square is the CMC, and the red
triangles are the amplifiers (and usually splitters) sitting in street cabinets.
It is usual for network owners to know all the components of their HFC
network, but often not the complete mapping of the connections.

to even small fluctuations in the power of the signal and might cause connection
breakdown, and because the PNM filters have become very good at dealing with
impaired signals (see section 2.2.2.3). This means that the inference of network
topology continues to be problematic and that a solution considering only time
series data gathered by each of the customer modems (leaf nodes) would be
valuable. The problem is visualized in Figure 6.1.

6.2.1 Borrowing from Biology

Later collaborators Sørensen & Pisinger developed a method for inferring the
topology of an HFC network using both geographical coordinates and discrete
data points gathered at the customer level [138]. For each time point, they
considered discrete data points in an alphabet, Ω, and gave each character (or
state) in the alphabet an interpretation by assuming different events could occur
along the network edges or amplifiers. By considering these series of discrete
variables coded sequences like that of DNA in different species, it allowed them
to use the so-called parsimony score as an optimality criterion while searching
for the optimal tree or the topology that best explains the data sequences. The
parsimony score is a method originally intended for inferring phylogenetic trees
in biology by counting the number of mutations of an original (shared ancestor)
sequence that would be needed to explain the states at the leaf level. This
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Figure 6.2: Two candidates for phylogenetic trees explaining the ancestral
evolution of four species. The genes that code for traits, including having
legs and having thumbs, arose as mutations in earlier species. By counting
the number of mutations happening on each of the trees, one would assume
that the left tree is the most likely, as it would be unlikely that two different
species developed thumbs independently.

concept is illustrated in Figure 6.2. To demonstrate their method for inference
of the missing topology in HFC networks, Sørensen & Pisinger simulated binary
data series. In this simulated data, a value of 0 would imply that no event was
affecting a given customer at a given time, while a value of 1 would imply the
contrary. For each time point, events were simulated randomly on the network
edges and assumed to affect all customers topologically beneath it equally. Thus,
they did not prove their method on continuous time series data - a step that
would be critical for the deployment in real-world networks.

6.2.2 Considering Multiple Different Topologies

In the attempt to overcome the challenge of encoding continuous data into se-
quences of discrete events (a seq2seq - sequence-to-sequence model), a tempting
idea is to simply train a model using the parsimony score as a loss function.
Since the goal of the algorithm developed by Sørensen & Pisinger is to find
the tree topology that requires the least mutations to explain the leaf data, it
seems logical to minimize the parsimony score during training. However, this
approach poses a problem since data sequences in which every data point has
the same value would not require any mutations to explain. This means that the
trivial (zero-encoder) would be learned; i.e. the model that encodes everything
to the same discrete value. Reconsidering the aim of the parsimony algorithm it
becomes clear that the objective is to calculate a value for a tree in relation to
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Figure 6.3: The 16 different permutations of a rooted tree with four
internal nodes taken from [147].

other trees in order to arrive at the optimal one. This means that to extract sig-
nificant events with respect to the parsimony score, one would need to consider
a set of potential trees and how the parsimony score treats these differently.

Paper C – Topology Reconstruction in Telecommunication Networks:
Embedding Operations Research within Deep Learning

In paper C, we investigate the potential of using a contrastive approach to
learn the discrete event encoder, acknowledging that multiple different topolo-
gies must be compared in the loss function.

In this pilot study, we investigate networks of relatively small sizes. This enabled
us to easily consider the entire set of true topologies, as there are for instance
only 16 possible ones when considering a tree with four internal nodes (of which
one is the CMC), and, for the smallest trees, to incorporate all of them into
the loss function, while still maintaining fast training. See Figure 6.3 for the
different permutations of a tree with four nodes.

We proposed to train the encoder using a Siamese network [91], meaning that
the time series from each of the individual modems will be encoded using the
same encoder model when turning the continuous time series into sequences of
embeddings. We then use the parsimony algorithm to calculate the number of
mutations needed to explain this encoded data for a set of potential topologies
individually. This enabled us to propose a contrastive loss function with two
terms: one being the minimization of the parsimony score when calculated using
the true topology (the one used to sample the events in the input time series),
and the other being the maximization of the differences between parsimony
scores calculated using any two different topologies.
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While this initially showed great potential and good results, we also identified
further problems to be solved and generalizations to be investigated before be-
ing able to fully ascertain the feasibility of the approach in real networks. For
instance, it was found that the original parsimony algorithm proposed by Har-
tigan in 1973 [69], was not guaranteed to yield uniquely optimal solutions. In
some cases, a topology different from the true topology would, in all cases, give
the exact same score as the true one, making them indistinguishable from a
parsimony perspective.

6.2.3 Training a Discrete Event Encoder

To adequately confirm the feasibility of training an encoder able to transform
continuous modem data into (in this case) binary sequences based on the par-
simony principle, several things need to be investigated:

• How can we guarantee unique solutions using the parsimony principle?

• How can Hartigan’s algorithm [69] be changed to guarantee uniquely best
solutions?

• How do we ensure proper calculations of gradients through the parsimony
algorithm?

• How do different data characteristics affect the performance of our ap-
proach?

• How well does the approach generalize to be used on trees of various sizes?

Paper C provides answers to all of the above questions by demonstrating the
feasibility of training a sequence-to-sequence encoder able to extract relevant
encodings to be used in the algorithm developed by Sørensen & Pisinger in [138].
It achieves high accuracy in both end goals: minimizing the parsimony score
among all possible topologies for the true topology (i.e. the one from which the
data was sampled) and reconstructing the underlying sampled events. In the
process, however, the paper also has implications that reach far beyond these
concrete goals and beyond what was initially believed.

6.2.4 Embedding Operations Research in Deep Learning

Although every ML problem is in reality an optimization problem in which an
objective (the loss function) is optimized with respect to some decision vari-



74 Summary and Perspective of Research

ables (weights), we believe to be the first to embed an optimization algorithm
directly within a deep learning loss function. This means that every time the
loss function is called the optimal solution to an optimization problem needs to
be found. The parsimony score of a tree is, in fact, an optimization problem
because it is exactly the optimal way in which a base signal from the root of the
tree is evolved through the branches using the least amount of mutations to the
data sequence.

Having made a slight modification to the tree reconstruction problem in which
an interpretation of one of the states of the model is given, we also provide a
novel algorithm that is proved to provide the optimal solution with regard to
this updated formulation. This algorithm is believed to ensure solutions that
are both optimal and unique. This means that no topology different from the
true topology will give parsimony scores equal to or better than that of the true
topology. This claim cannot be proved for trees of all sizes but is formulated
as a conjecture that is left for others to potentially prove in future work. Even
though the conjecture can only be proved for trees with up to and including six
internal nodes by trying every single combination, a series of experiments are
conducted in which a sophisticated topology sampling algorithm is used to cover
the space of possible topologies to look for cases disproving the conjecture.

A second modification to the algorithm considers not discrete data states, but
probabilities for each of the data states. While this solves the problem of discon-
tinuity when calculating the loss, it also has further implications since it could
be used in cases where the data states cannot be determined precisely but are
affiliated with some uncertainty.

6.3 Conclusion

The research carried out in this project demonstrates different ways in which
time series data can be used to extract relevant information. We show that value
can be created regardless of whether one already has a strong understanding of
the time series and their inherent faults, whether the goal of the analysis is to
gain insights into the problem, or even when one is dealing with a higher-level
issue without a specific focus within the time series.

In paper A, we show that a good understanding of the physical properties of
certain faults makes a good foundation for training a model to detect that very
problem. We show promising results for detecting CPD using both feature
extraction and simple thresholding learned by a supervised model. In paper B,
we show that abnormal behavior can be quantified and detected in low-density
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zones of the distribution of time series behavior while showing that it is possible
to exclude abnormal behavior in such a way that they fall into clusters from
which underlying root causes can be identified. Finally in paper C, we showed
that relevant time series events can be extracted with a higher-level goal in mind.
We show that it is possible to use an optimization problem directly in the loss
function toward the goal of reconstructing the topology of an HFC network in
regions where it is not known.

Though all of the work shows great potential, it suffers from the data quality
made available throughout this project making it somewhat preliminary. In the
CPD case, a dataset of higher quality would be valuable in which various degrees
of CPD could be controlled and tested to see how they manifest themselves in
the aggregated time series data. For the unsupervised problem, a multivariate
time series dataset with a number of well-known underlying root causes would
enable an even more sound analysis of our proposed approach. For the same
problem, an accurate ground truth of abnormal time points of the broadband
dataset would enable a validation of the method to be used on that data. This is
also evident for the topology reconstruction problem, where the missing ground
truth forced us to simulate continuous time series data with known events to
properly validate our approach instead of using actual data from the network.

All in all, a good understanding of the domain, the data, and the faults that
are inherent therein is crucial when performing time series analysis. Unsuper-
vised approaches can be used when a ground truth is unavailable, but they
should not be used without careful consideration of intuition and the potential
implications of the results. This means that high-quality datasets containing
remotely gathered broadband data, accurate ground truths of errors, and labels
for different types of errors would be immensely valuable to the ISPs that own
and maintain HFC networks worldwide. These can be achieved both by letting
domain experts and technicians examine the network closely and register errors
that are found or by simulating a dataset in a laboratory where different faults
and varying degrees thereof can be fully controlled.

While our studies are somewhat preliminary for the direct application to HFC
networks, the results of this thesis show potential for future studies and impli-
cations that reach further than broadband networks. Being able to accurately
estimate the density of a multivariate time series could be of great value in many
fields where multivariate time series plays a role. Additionally, being able to
cluster abnormal behavior and relate it to actual root causes in the modeled
system would be of even greater value. Finally, embedding an optimization
problem directly into a deep learning loss function could make a difference in
fields where one does not know what specifically to look for when optimizing a
higher-level problem. We show that these things are possible – even when the
data quality is not optimal.
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Abstract

Common Path Distortion (CPD) is an extensive issue affecting
Hybrid-Fiber Coaxial (HFC) Networks. Although the problem has a
direct effect on the customer experience, there is no decisive method
of remotely detecting CPD in an HFC network. Devices such as
spectrum analyzers can be used to identify CPD at source, how-
ever, these are costly and inefficient to deploy. Proactive Network
Maintenance (PNM) metrics provide an insight into the status of
the network but there is limited knowledge on the manifestation of
CPD.

We introduce BoCPaD (Broadband Common Path Distortion
dataset); a novel CPD-detection dataset consisting of 655 manually
labeled observations from the HFC network of TDC NET spanning
most of Denmark. To precisely identify CPD faults, we present
two feature-engineering schemes based on firstly, the binning, and,
secondly, the utilization of distributional moments of specified, rel-
evant variables. These are subsequently modeled using a variety of
machine learning (ML) models. An explainability technique known
as Shapley values is implemented on the highest-performing model
to ascertain the most influential parameters. We use this analysis to
propose an intuitive business rule based on two-layer thresholding
of significant features.

We find that the two proposed feature-engineering approaches each
allow for accurate modeling of CPD, but also that the simpler, in-
tuitive business rule achieves comparable results using far fewer
estimated parameters. Our intuitive business rule allows internet
service providers to choose a model that is easy to interpret and im-
plement while still achieving results comparable to state-of-the-art
ML models using our feature-engineering approaches.

7.1 Introduction

A Hybrid Fiber-Coaxial network provides broadband connectivity directly to
the subscribers on its network. The architecture comprises both fiber optic
cabling and coaxial cabling to transfer signals from the common root node to its
customers and vice versa. The network consists of independent channels (carrier



7.2 Background and Data 79

frequencies) for both the upstream (US) and downstream (DS) signals1.

Degradation can occur in the signal which causes an individual customer or
multiple customers to lose or have significantly reduced connectivity [199]. One
of the most prolific problems that cause network breakdown is called Common
Path Distortion (CPD). CPD is an impairment that occurs in two-way cable
systems where signal leakage seeps into the US signal from its corresponding
DS signal. As the problem materializes in the US signal, it generally causes
multiple connectivity failures on the network at the same time [164].

Though CPD is a common problem, there is no shared consensus on how best
to detect it remotely in an operating network. The goal of this paper is to 1)
introduce a labeled dataset based on remotely acquired parameters that can
be used to detect cases of CPD, and 2) examine the performance of different
models in detecting CPD using the obtained dataset.

The data used for this research has been provided by TDC NET, Denmark
’s largest internet service provider [180]. TDC NET supplies approximately
600,000 customers throughout their HFC network spanning the whole of Den-
mark. Domain experts at TDC NET estimate this issue affects roughly 50,000
customers on their network per year. CPD can be difficult to distinguish from
other noise problems in the US signal as it generally manifests itself as an in-
crease of noise in the signal.

In section 7.2 we explain the background of the HFC networks and the data gen-
erated therein. We present current state-of-the-art and our novel contributions
in section 7.3, explain the proposed data generation scheme in section 7.4, and
finally the model in section 7.5. We evaluate our proposed method and data set
in section 7.6 followed by a discussion in section 7.7.

7.2 Background and Data

7.2.1 Cable Network Architecture

Coaxial cables are a type of electrical cable consisting of an inner copper con-
ductor with an insulator shield surrounding it. Additionally, a braided metal
mesh prevents external interference, since coaxial cables can be prone to radio
frequency (RF) interference. See Figure 7.2 for an example of both ends of a

1The US direction of the HFC network is when data is transmitted from the individual
customer modems up to the headend and the DS signal carries data in the opposite direction.



80 Paper A

Figure 7.1: Overview of the Hybrid Fiber Coaxial (HFC) architecture.

coaxial cable. The cable broadband system is an access network, meaning that
it transmits signals to all the subscribers on the network. A given coax network
architecture resembles a tree (like a hierarchy) with the central root node as the
root and the individual customers as leaves on the tree. The central root node
may be hereafter referred to as the Coaxial Media Converter or CMC and the
individual customers on the networks will be described as customer modems or
CMs. The CMC is connected to the modems through a sequence of amplifiers
which are linked in various ways and make up the topology of the coaxial net-
work. Due to the CMC being connected to the backbone internet, the CMs
provide internet access to the individual users on the network. All cabling and
signals beyond the CMC are optical and are transformed to coaxial at the CMC.
Therefore, each hierarchy of the coaxial part of the network can be treated as
separate segment. An overview of a segment of a typical architecture of a coaxial
network from CMC to individual CMs is visible in Figure 7.1. The equipment
of a HFC network, which generally consists of amplifiers and splitters (splitting
the signal) are placed inside street cabinets in the local area hosting the coaxial
network.

In order to mitigate against possible faults that can arise in the HFC network,
the cable industry has established standard data metrics which are collected to
analyse the health of the network [184]. These metrics are a part of Proactive
Network Maintenance (PNM). PNM metrics help improve the overall reliability
of the networks by proactively detecting and fixing faults before they become an
issue for customers [77, 203]. PNMmetrics are collected at both the CMC and at
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each CM. The amplifier devices which are components in the HFC structure are
passive devices that implement non-linear RF amplification and PNM metrics
are not collected at these points.

PNM data are routinely collected in HFC networks and has been recommended
for network maintenance by the Data Over Cable Service Interface Specification
(DOCSIS) since 2005 [203]. The most optimal way of using the data to improve
network reliability, however, continues to be unresolved [77]. This is due in part
to the the quantity of parameters available to technicians meaning that it is
not easy to monitor on a constant basis, and partly due to the vast amount of
different faults that can happen in the network. For instance weather conditions
have shown to have an effect on network quality [195, 129]. Prior research has
mainly focused on detecting arbitrary faults, rather than classifying specific
sources of network degradation. The metrics collected can provide indicators of
faults that may or have occurred in the system, they do not directly pinpoint any
specific cause of network breakdown. Additionally, PNM data does not identify
which device in the network is the root cause for a failure [71]. Technicians in the
field are still obligated to manually detect faults which is both time consuming
and prone to human error.

7.2.2 Dataset

In collaboration with TDC NET, three months of anonymized PNM data was
obtained. The type of HFC network data being used in this research is Quadra-
ture Amplitude Modulation or QAM. QAM is a type of signal in which the two
carriers on the same frequency are shifted 90 degrees. As a result of this phase
difference they are in quadrature which gives rise to the name [45]. As men-
tioned previously, the volume of PNM parameters is extensive. Both the CMC
and each channel2 of the CM collect similar metrics, separately for both US
and DS, and new data is polled from each device in a raw format every fifteen
minutes. Amongst the variables collected are: cable modem transmission power
(Tx power), ratio of codewords that could not be corrected (uncorrectable ra-
tio), ratio codewords that have been corrected (corrected ratio), signal to noise
ratio (SNR) and modulation error ratio (MER). We have selected a subset of
the listed variables based on their prevalence in existing research and on the
knowledge of domain experts [203, 77], Therefore, we focus our research study
on minimum CM MER (minimum MER during the fifteen minutes between
polls) and US CMC SNR data. Both terms can be seen as analogous and refer
to a measure that compares the level of desired signal to the level of unwanted

2The frequency band is divided into a set of non-overlapping channels that facilitate trans-
mission of large amounts of data for both US and DS signals.
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Figure 7.2: Image of corroded connector which results typically results in
a CPD fault. Taken from [71].

noise, however, signal to noise ratio quantifies the baseband signal whereas MER
refers to the information carrying part.

7.2.3 Common Path Distortion

Common Path Distortion (CPD) can be the result of a variety of root causes
including stresses or corrosion on the connector elements which results in the
creation of a non-linear diode junction[193]. The consequence is a non-linear
distortion, where forward moving signals in the spectrum are pitched at new
frequencies as they pass the source of the CPD. Historically, CPD manifested
itself by recurring 6MHz spikes across the return spectrum, however, in QAM
channels it results in an increased noise floor and is thus indistinguishable from
other noise in a digital network[164]. An example of a corroded connector can
be seen in Figure 7.2. As the US SNR metric at the CMC is the result of a
hierarchical aggregation of signals from all the CMs and up, it follows that a fault
which will initially affect only a single signal can rapidly propagate to multiple
customer signals and in extreme cases destroy all connectivity under a single
shared amplifier. In comparison, the DS MER metric measured at each CM is
a result of the specific path of the signal from CMC through amplifiers to the
customer, hence, DS faults can be traced to individual customer signals where
they can be repaired by technicians. Due to technicians having the problem
of not knowing where in the network the problem is located, the process of
investigating and repairing the faults becomes extensive. Whilst the CMs and
CMCs collect PNM parameters at both ends of the network, the amplifiers are
passive devices and therefore do not collect data. therefore it is difficult to
ascertain if the fault occurred near a customer’s home or at another location on
the network.
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7.3 Overview

7.3.1 Existing Literature

To the best knowledge of the authors, previous research that specifically per-
tains to detecting CPD in HFC networks is very limited [194]. Currently, fault
repair is dependent on customer calls, which can be an unreliable means of detec-
tion, since costumers are unlikely to call unless the connection is severe and/or
network issues are prolonged. When the customer calls and a trouble ticket is
logged, the repair technician will first go to the customer’s home. However, the
fault may not be located in or near the home and therefore the technician will
have to conduct a binary method of moving through the network in order to pin-
point the fault location. This is problematic, both for the repair technician who
is persisting with a time-consuming means of fault detection and the customers
on the network who experience connectivity issues until the problem is fixed.
Heiler et. al released a paper in 2022 which focused on detecting CPD by using
the customer trouble tickets to label the PNM data [71]. TDC NET also collect
customer trouble tickets which were made available to the authors. However, we
found the TDC NET trouble tickets lacked the necessary information to make
accurate labels. We also found that quite often faults are reported by customers
which are unrelated to a network error and are instead due to an installation is-
sue in the customer premises equipment (CPE). The converse is also true, with
customers not logging when they have a problem. As described by Chen et.
al in [33], the relationship between network failures and customer calls can be
jumbled, as some customers may not call in the event of reduced connectivity
whilst other calls will be dictated by the impact on the customer, the customers
availability, and the time of day. Hu et. al also discuss the uncertainty of cus-
tomer trouble tickets to determine network breakdown when developing their
Cablemon tool[77]. In this paper, they use customer trouble tickets as hints
to filter the data rather than as representing an absolute truth. However, the
research focuses on sources of general network breakdown rather than detecting
CPD specifically. In other research, such as the work by Simakovic et. al, a
binary threshold is set on a parameter called ’cdxCmtsCmRegistered’, which
records the number of online and active modems at a given timepoint, and is
used to detect a network fault. When the number of active modem users is
15% less than the previous twenty iterations of the same collection, a failure
is recorded [173]. Hard thresholds of the PNM metrics have also been used in
additional studies to detect network issues[94, 159], however again not CPD
specifically.

As described previously, much of the relevant research available in PNM in the
HFC networks cites MER as a highly significant variable. This is certainly the
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case with the PNM paper by Zhu et. al where the authors outline a number of
signal faults that can be detected by specifically using Receiver MER (RxMER
- MER from the DS signal) [203]. They then use this parameter to create
an automated detection platform of faults using machine learning methods.
Overall, however, using PNM metrics to detect CPD in a coaxial cable network
has not been extensively investigated, despite it being such a pervasive issue.

In many of the HFC networks referred to in the above work, namely [71] and
[173], it specifically mentions the fact that amplifiers do not collect data, hence
it is difficult to gain an accurate insight into the status of the health of the
network at every location. In [71], the authors overcome this by aggregating the
values of PNM parameters of all CMs that share the lowest common amplifier
in the network hierarchy or last line amplifier. If the behaviour at multiple last
line amplifiers is anomalous, then the conclusion is that the problem is located
at an amplifier higher up in the hierarchy.

7.3.2 Problem Complexity

Common Path Distortion is described as the leading cause of network failure in
coaxial cable networks annually by TDC NET. It is indistinguishable from other
high noise impairments in the upstream signal. Consequently, analysing PNM
metrics becomes necessary in order to identify any prevailing patterns in the
data. Nonetheless, using PNM metrics to detect CPD is not a straightforward
solution and, as stated previously, some of the issues include:

• There is no shared consensus on how best to use the PNM parameters to
detect faults

• The amount of PNM data being collected is extensive and therefore diffi-
cult to monitor

• There is a lot of noise in the PNM parameters and this makes it diffi-
cult distinguishing high noise errors from point anomalies which do not
generally cause network errors

Therefore, the way in which CPD presents in the data must be specifically
examined and predetermined before using it as a means of detecting faults.
Unfortunately, even this is not a clear-cut process. There is no existing dataset
containing labelled instances of CPD, and any known methods of detecting
network breakdown are considered unreliable indicators i.e. customer trouble
tickets. For the reasons described in Section 3.1, it was decided to omit applying
data from trouble tickets entirely from the labeling process.



7.4 Dataset Generation 85

7.3.3 Contributions

It is the aim of this research to:

• Establish a reliable, labelled dataset for classifying CPD faults in HFC
networks. The dataset is to be made public and used in this and future
work.

• Propose a precise way of identifying CPD in a HFC network, directly from
PNM data, comprehensively testing this hypothesis using statistical and
machine learning methods on the developed datasets.

It is the aim of this research to, in collaboration with industry domain experts,
establish a precise way of identifying CPD in a HFC network, comprehensively
testing this hypothesis using statistical and machine learning methods and mak-
ing the methods and datasets used in this paper public for future use and anal-
ysis.

7.4 Dataset Generation

In collaboration with domain experts at TDC NET, we have generated a dataset
to be used for further analysis. The dataset consists of instances in the PNM
technology parameters (MER and SNR), which have been labelled positively or
negatively for the presence of CPD. We name the dataset BoCPaD (Broadband
Common Path Distortion dataset). In the following, we describe details of the
generation of the dataset.

7.4.1 BoCPaD: Real-World Labelled Dataset

Spectrum analyzers are used by field work technicians to successfully determine
anomalies at a given location. Although a spectrum analyzer, with a high degree
of accuracy, can identify cases of CPD the use of the spectrum analyzer is not
considered optimal for the detection of CPD cases. This is due to the fact that
spectrum analyzers must be at the point of the network at which the fault is
present in order to verify an instance of CPD. This results in extremely time-
consuming and resource-heavy fault detection for field work technicians.
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Figure 7.3: Representation of the rule of thumb for the presence of CPD
in PNM data. Some CMs experience a DS MER downwards deviation
correlating with the CMC SNR.

A CPD instance is associated with a last-line amplifier on a specific day and
the corresponding data is the time series measurements from all the CMs that
are children of that amplifier and the CMC-measurements of the ancestoring
CMC (the root of the tree) during the given 24 hour period. The behaviour of
the CMC SNR and the minimum CM MER (herafter just denoted CM MER)
parameters at the time and location of the fault are examined. Based on the
technicians’ domain knowledge about HFC networks in general combined with
their experience obtained from measurements with a spectrum analyzer, they
are able to distinguish a fluctuation pattern in the parameters caused by CPD
from other typical fluctuations in the MER and SNR behaviour. This allows
them to manually label CPD instances by visually inspecting the time series
graphs obtained on the PNM metrics.

When the technicians/domain experts are asked how they achieve the CPD la-
belling on the data series, a single quantitative description cannot be pinpointed.
This is due to it being partially based on tacit knowledge (the aim of building
our ML models is to bring this tacit knowledge into an applicable quantitative
model). However, they can provide us with a rule of thumb, which can be
summarized as follows: when the CM MER deviates significantly downwards
between timestamps simultaneously for a group of modems under a particular
amplifier, and the US CMC SNR moves downwards during the same time pe-
riod, then CPD is present in the network and is affecting the given amplifier. A
visual representation of this rule of thumb is illustrated in Figure 7.3.

Furthermore, we learn from the domain experts that instances with too few
modems are disregarded as these are deemed too challenging to label. It is
determined that in order to effectively conclude whether CPD is present for a
given set of lowest line amplifier and its underlying modems, at least 40% of the
modems must show signs of CPD fluctuation. Hence only these will be labelled
in this study. For example, in Figure 7.4, it can be seen while the symptoms
of CPD are present in Modem 3 and 4 for a given aggregation of a given day,
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Figure 7.4: Lowest line amplifier with some modems showing signs of
CPD (purple).

Modem 1 and 2 are behaving normally. If the fluctuation was only visible in
Modem 3, then it could not be precisely deduced that the fluctuation present
is caused by CPD. Also the labelling procedure pays attention to the CMC
behaviour and therefore identifying an instance of CPD is conditional on the
upstream SNR of the CMC also deviating. If, the conditions are not fulfilled in
any way3 then the suspected case is not indicative of CPD but rather another
type of error. Therefore, the correlation between CMC SNR and CM MER also
has to be taken into account. After manually labelling the instances using the
algorithm described in section 7.A, negative samples are randomly extracted
to ensure a balanced dataset. The sampling is carried out to ensure that the
dataset contains an accurate representation of the distribution of cases of CPD
in the actual network. It should be noted that the instances of CPD which are
negative in the dataset may contain other network errors, but are acknowledged
to be free from CPD.

7.4.1.1 Preprocessing and time point alignment

Both CM MER and CMC SNR are measured over six channels, recording a
value every 15 minutes on each. The values of the channels are averaged for
each time point. In order to make the time series in the same instance directly
comparable, the time points of the polls need to be aligned and the missing
values imputed. CMs are not always polled at the same time and with exactly
15 minutes between. We align the time points by assuming measurements are
polled simultaneously for both CMs and the CMC every 15 minutes, which
generates a sequence of time points with exactly 15 minutes between each point.
The new sequence would then be shifted so that it would be polled according to
the original CMC time point sequence (the CMC time series is to be compared to
all of the CM time series individually). Furthermore, we use linear interpolation
to impute missing values. The alignment and imputing scheme is illustrated in

3For example, if the modem deviates and the CMC does not
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Figure 7.5: Illustration of the time point alignment and missing time
point imputation scheme. The optimal placement of polls with respect to
time is derived from the CMC SNR polls assuming polls every 15 minutes.
These optimal polls are then used to impute missing data and align time
points across multiple time series using linear interpolation.

Figure 7.5.

7.5 Proposed Method

In this section we present our proposed algorithm for detection of CPD faults
in broadband networks using individual 24-hour time series. Our algorithm
consists of two steps. Firstly, a feature engineering scheme is applied to the
time series data. Secondly, the application a given ML method to the feature-
engineered variables in order to learn the labelled classes of the data. We inves-
tigate different ML methods, including XGBoost[31], Random Forest[105], Lo-
gistic Regression[36], and a Multi-Layer Perceptron (MLP)[118]. We compare
these models to an intuitive business rule based on the raw data. The business
rule (explained in section 7.5.3) is rooted in both; the exhibited signal behaviour
when a CPD fault is present, as believed by domain experts in the broadband
network field; and a SHAP (SHapley Additive exPlanations) analysis of impor-
tant variables with respect to the ML models used on the feature-engineered
variables.

7.5.1 Feature Engineering

The classification of a given observation in the dataset is based on whether or
not a CPD fault is present at a given last-line amplifier on a given day. Since an
amplifier can be connected to an arbitrary number of modems, it means that the
basis of the features of an observation consists of an arbitrary number of time
series across a number of observations. In order to facilitate the learning of ML
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models that require a fixed-size input, two different feature engineering schemes
are proposed. These schemes have two objectives: 1) ensuring the features for a
given observation have standardized size, and 2) encoding information identified
to be relevant for learning whether or not a CPD fault is present. The first
scheme is based on binning the relevant variables at distinct intervals whereas
the second scheme makes use of distributional moments of the same variables.

7.5.1.1 Binning scheme

We consider N observations/examples, and a given observation i ∈ {1, . . . , N}
has associated with it; an amplifier ai, a specific date di, and a label yi = 1 if a
CPD fault is associated with ai during di, and yi = 0 otherwise. Let the matrix
Mi be the time series made up of RxMER measurements during di from each
child modem of amplifier ai, which means thatMi will have shapeMi×Ti where
Mi is the number of modems under the amplifier ai and Ti will be the number
of sampled measurements during the day4. Finally, let ci be the vector of CMC
SNR measurements in time during di from the CMC that is the ancestor of ai.
According to observation i, we calculate the following features (| • | denotes the
cardinality):

• CMC SNR Standard deviation:

Si = σ(ci) (7.1)

where σ(•) is the standard deviation.

• Binned CMC SNR z-scores Normalized fraction of polls in bins with
breakpoints bz, resulting in a vector zi with elements:

zi(l) =
1

Ti

∑
k

1
(l)
bz

(
ci(k)− c̄i

Si

)
, l = 1, . . . , |bz| − 1 (7.2)

where ci(k) is the k-th element of ci and:

1
(α)
β (x) =

{
1 if β(α) ≤ x < β(α+ 1)

0 otherwise
(7.3)

• Binned CM MER standard deviations Normalized fraction of CMs
with MER standard deviation in bins with breakpoints bs resulting in a
vector si with elements:

si(l) =
1

Mi

∑
k

1
(l)
bs
(σ(Mi(k))), l = 1, . . . , |bs| − 1 (7.4)

4Ti is always approximately 96, but can vary slightly due to positions of the polls.
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where Mi(k) denotes the k-th row of Mi corresponding to the time series
from the k-th modem and where the indicator is given in (7.3).

• Binned correlations Normalized fraction of CMs for which the corre-
lation of the MER with the CMC SNR falls in bins with breakpoints br,
resulting in a vector ri with elements:

ri(l) =
1

Mi

∑
k

1
(l)
br

(ρ(Mi(k), ci)) , l = 1, . . . , |br| − 1 (7.5)

where ρ(•) is the Pearson correlation and the indicator is given in (7.3).

• Combinations of bins Fraction of CMs in every combination of the
bins given in (7.4) and (7.5), resulting in a matrix Qi with elements:

Qi(l, h) =
1

Mi

∑
k

1
(l)
bs
(σ(Mi(k))) · 1(h)

br
(ρ(Mi(k), ci))

l = 1, . . . , |bs| − 1 h = 1, . . . , |br| − 1

(7.6)

The resulting observation will be a concatenation of all these features after
flattening Qi:

X(i) =
[
Si z⊤

i s⊤i r⊤i Qi(1) Qi(2) · · ·
]

(7.7)

which means that each observation will have

|X(i)| = 1 + (|bz| − 1) + (|bs| − 1) + (|br| − 1)

+ (|bs| − 1) · (|br| − 1)

= |bz|+ |bs| · |br| − 1

(7.8)

features associated with it. The bins for the standard deviations and correlations
respectively are included in the data because these are beneficial in detecting
fluctuations in the parameters. For the CMC SNR, the standard deviation
and binned z-scores are included to make the model more robust to short and
insignificant fluctuations in the US signal.

7.5.1.2 Distributional moments scheme

A probability distribution is characterized by its moments which analyze the
dispersion and location of the data. The third moment, for example, carries
information about the skewness of the data. In this instance, we wish to know if
by calculating the moments of the distribution of modem standard deviations of
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RxMER and correlations to the CMC SNR, it will provide a more optimal fea-
ture description than that of the binning approach or whether it could enhance
the binning approach in another way. As before, an observation i ∈ {1, . . . , N}
consists of an amplifier ai, a specific date di, and a label yi = 1 if a CPD fault
is associated with ai during di, and y = 0 otherwise. The same notation ex-
ists for the matrix of modem RxMER features and CMC SNR features. This
means that for each observation i we have three distributions that we want to
characterize:

• Standard deviation of modem RxMER
Let smi be the vector of standard deviations of the RxMER measurements
for the different modems in the i-th observation, i.e. with elements:

smi(k) = σ(Mi(k)) (7.9)

Where σ(•) is the standard deviation.

• Correlations between modem RxMER and CMC SNR
Let sci be the vector of correlations between modem RxMER measure-
ments and CMC SNR measurements for the ith observation. Elements
are given by:

sci(k) = ρ(Mi(k), ci) (7.10)
Where ρ is the Pearson correlation.

• CMC SNR time series measurements
Time series SNR measurements from the CMC of the i observation, de-
noted by ci.

For each of these distributions we calculate characteristics according to the first
four distributional moments [204]. That is we calculate the mean, the variance,
the skewness given by:

µ3(x) =

∑
k (x(k)− x)

3

(|x| − 1) · σ(x)3
(7.11)

and the kurtosis given by:

µ4(x) =

∑
k (x(k)− x)

4

(|x| − 1) · σ(x)4
(7.12)

Therefore, a single observation will comprise of a concatenation of all of these
features.:

X(i) =
[

smi σ(smi)
2 µ3(smi) µ4(smi) . . .

. . . sci σ(sci)
2 µ3(sci) µ4(sci) . . .

. . . ci σ(ci) µ3(ci) µ4(ci)
] (7.13)
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We calculate the standard deviation instead of the variance for the CMC SNR
measurements due to comparability to the other methods.

7.5.2 Modelling

We have examined and compared the classification performances of four stan-
dard machine learning models on our data set. The models are:

• Random Forest - which is an ensemble method combining a set of dif-
ferent classification binary decision trees to make a final prediction[105].

• Logistic Regression - which is a linear model of the log-odds of the
outcome[36].

• XGBoost - which is a boosting algorithm based on classification trees[31].

• Multi-Layer Perceptron - which is neural network consisting of at least
two fully-connected, linear layers[118].

We evaluate the models by quantifying each classifier on a number of perfor-
mance metrics including accuracy, sensitivity, specificity and precision. We use
five-fold cross-validation to assess the performance on a test set[152].

For models trained on the distributional moments features we perform a SHAP
analysis [108] to identify important features with respect to the classification
problem. We use these features to propose an intuitive business rule based on
two-step thresholding and compare it to the models trained on the engineered
features.

7.5.2.1 Model selection

In the case of using the binning scheme described above for feature-engineering,
we search for the optimal number of histogram bins for the feature-engineered
parameters and for the optimal hyper-parameters for the different ML models
to be investigated. With respect to the size of the bins or number of breakpoints
potentially impacting the performance of the model, a number of trial and error
experiments were carried out to assess whether an optimal number of bins and
breakpoints could be found. Initially, the bins were generated using 8 equal-sized
quantiles. This means that an observation (given a set of time series during a
day) is comprised of:
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• Standard deviation of the CMC SNR

• Fraction of CMs with a MER standard deviation within each correspond-
ing bin

• Fraction of Z-scores of the CMC SNR (statistical measurement of a value’s
normalised distance to the mean) within each corresponding bin

• Fraction of CMs for which the correlation between the MER and the CMC
SNR is within each corresponding bin.

It was eventually found that whilst bin sizes did not have a significant impact,
the placement of the breakpoints had some dependency with the performance of
the model. Therefore, the data was eventually processed so that it was divided
into just two bins and with the position of the bin breakpoints varying with
each iteration. In training each of the ML models (using feature-engineered
variables) and in the case of binary bins, we perform a grid search of optimal
breakpoints for the CM MER standard deviations and the correlations to the
CMC SNR values. For each pair of breakpoints, we train and validate each of
the models using five-fold cross validation and report the mean AUC over the
five folds.

The machine learning models were selected due to their suitability in performing
binary classification. Logistic regression was used as it predicts probabilities of
an observation belonging to a particular class. It was also important to assess
the performance of ensemble learning methods, therefore Random Forest was
selected. On the basis of their dominance in machine learning in terms of speed
and performance XGBoost and a Multi-Layer Perceptron (Neural Network) was
also selected. Tuning the hyperparameters of these models was not a priority
of this research as the focus was placed both on the feature engineering scheme
and the explainability of the features.

The scikit-learn (1.0.2) library [136] in python (3.9.1) was used for im-
plementations of all the different models.

7.5.3 Explainability and Important Variables

In order to avoid the ML models being complete black boxes with lack of trans-
parency several methods exist to give some degrees of explainability. Where
the coefficients obtained for a linear model like logistic regression can give some
immediate insight, more sophisticated methods are needed for non-linear mod-
els. Shapley values, or SHAP values, are a commonly used approach initially
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developed in cooperative game theory which can help define which parameters
of a machine learning model are the most useful [108] or have the biggest im-
pact. It is a model agnostic framework and thus can be used to interpret the
output of a variety of ML models. In essence, Shapley values describe the mean
marginal contribution of each feature value across all values in a feature space.
The formula is described in equation (7.14) (| • | again denotes the cardinality):

φi(v) =
∑

S⊆F\{i}

|S|!(F − |S| − 1)!

|F |!
(v(S ∪ {i})− v(S)) (7.14)

where F is the set of features, S is the coalition subset of players and v(S) is
the total value of S players.

Shapley values can provide an insight into both the magnitude and direction of
each feature’s effect on an observation. They can describe both contributions
of individual observations, or local behaviour, and the conduct of the data col-
lectively, or global behaviour [6]. While Shapley values can be demanding to
calculate for general ML models the scheme is especially suited for ensembles of
decision trees.

7.5.3.1 Intuitive business rule

For comparison to the four ML models described in section 5.2.1, we develop
an intuitive business rule5 based on the outcome of an analysis of the most
important features for modelling CPD as described above and according to
the proposed signal footprint during the presence of a CPD fault. Domain
experts believe that simultaneous drops in CM MER exhibited by modems that
share the same last-line amplifier and a concurrent drop in CMC SNR will
be evidence of CPD. An analysis of the SHAP-values of various ML methods
further supports this idea (see section 7.5.3 for the analysis). With this in mind
we develop a business rule based on two-step thresholding for the CM MER
standard deviations, and the correlation between the CM MER and the CMC
SNR. It should be noted that this business rule does not require fixed-size inputs,
hence will be evaluated on the raw time series from an observation and not on
the feature-engineered parameters.

Given an observation, i, we define two parameters αi and βi whereof the first
is the fraction of modems exhibiting a CM MER standard deviation above a
predetermined threshold, ωσ:

αi =

∑Mi

k=1 1ωσ
(σ(Mi(k)))

Mi
(7.15)

5A model based on (multiple levels of) thresholds of specific parameters.
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where σ is the standard deviation and where:

1a(x) =

{
1 if x > a

0 otherwise
(7.16)

The other is based on the fraction of modems for which the correlation between
the CM MER and CMC SNR is above a predetermined threshold, ωρ:

βi =

∑Mi

k=1 1ωρ
(ρ(Mi(k), ci))

Mi
(7.17)

where ρ is the Pearson correlation and where the indicator is given in (7.16). We
then model the outcome of the ith observation using two additional thresholds
for each of the two parameters respectively, namely ϕσ and ϕρ:

ŷi =

{
1 if αi > ϕσ ∧ βi > ϕρ

0 otherwise
(7.18)

During the search for the optimal thresholds, we treat βi as the prediction
probability and carry out a grid search for optimal values of ωσ, ωρ, and ϕσ
by maximizing the ROC AUC (an aggregated measure of performance) over
all possible classification thresholds. For comparability, we train using five-fold
cross-validation and report the optimal parameters and AUCs averaging over
the five folds. For each proposed value of ϕσ we set βi = 0 if αi ≤ ϕσ and
otherwise we keep its value.

7.6 Evaluation

In this section we first evaluate the characteristics of our obtained dataset before
we present the results of applying the proposed models to it. For all modelling
results, we choose the optimal threshold to be the one maximizing the F1/2-
score, which means that we set the precision to have twice the importance of
recall. This choice was made due to the fact that sending a technician to a false
positive would be costly and undesirable, hence we would prefer less severe cases
of CPD remain undetected rather than the opposite6.

7.6.1 Resulting Dataset

Table 7.1 shows the characteristics of the dataset resulting after manually la-
belling relevant observations. The dataset observations consists of; an array of

6We make the assumption that less severe cases of CPD will lead to lower prediction score.
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time series measurements of the CM MER from a set of CMs, a vector of time
series measurements of the CMC SNR, a label, and timestamp vectors that al-
low for correct interpolation of missing values or proper alignment of time series
polls.

Table 7.1: The metadata of the acquired dataset that consists of obser-
vations manually labelled by domain experts at TDC NET.

BoCPaD
Observations 655
CPD cases 212 (32.4%)

7.6.2 Modelling Results

Results for the individual models using the feature-engineering scheme based
on binning are shown in Table 7.2. To be able to compare the results of the
intuitive business rule to the rest of the models, results of these are reported
based on (individual) optimal break-points in the binary bin case of feature engi-
neered variables. Table 7.3 shows the results of the individual models using the
moments feature-engineering scheme and does not include the intuitive business
rule because it is not dependent on feature-engineering. Results for both tables
include AUCs (Area Under the Curve) of both the ROC (Receiver-Operator
Characteristic) and the PR (Precision-Recall) curve, and the optimal F1/2 score
along with corresponding precision and recall values. From both tables it is
clear that the XGBoost model is the superior model achieving a precision of
92.0% and 93.7% respectively, while detecting respectively 77.8% and 68.7 %
of the cases. It seems that the intuitive business rule achieves comparable re-
sults though estimating less parameters (especially compared to the ensemble
method). For the binning-scheme, it should be mentioned that all models, in-
cluding the intuitive business rule, have been allowed to search the continuous
space for optimal break-point values.

7.6.2.1 Optimal thresholds and breakpoints

For both the intuitive business rule and the ML models that are run on the
binned features, a search for optimal thresholds and breakpoints needs to be
carried out. In training the intuitive business rule, we searched the space of
threshold pairs, ωσ and ωρ. For every pair we we calculated the AUC for every
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Table 7.2: The cross-validated results of applying different models to the
BoCPaD dataset using the binning feature-engineering sceme. Binary bins
have been used with individually optimized breakpoints. The results for
the recall and precision are chosen at the threshold maximizing the F1/2

score.

ROC
AUC

PR
AUC Recall Prec. F1/2

Business rule .916 .831 .848 .797 .807
Logistic reg. .930 .827 .737 .862 .833
Random forest .956 .911 .808 .883 .867
XGBoost .960 .927 .778 .920 .888
MLP .942 .854 .758 .868 .844

Table 7.3: The results of applying different models to the BoCPaD dataset
using the distributional moments feature-engineering scheme. The results
for the recall and precision are chosen at the threshold maximizing the F1/2

score.

ROC
AUC

PR
AUC Recall Prec. F1/2

Logistic reg. .918 .838 .737 .826 .806
Random forest .954 .910 .737 .889 .854
XGBoost .959 .928 .687 .937 .873
MLP .905 .822 .737 .796 .783
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Table 7.4: Optimal threshold values resulting after cross-validating our
intuitive business rule approach. Notice that the optimal value for ϕρ is the
only one chosen post-hoc (maximizing the F1/2 score), as the fraction that
governs it has been treated as the prediction probabilities during learning.

Parameter ωσ ωρ ϕσ ϕρ

Optimal value 0.3701 0.5048 0.2778 0.2953*

Figure 7.6: Contour plot of the cross-validated maximum ROC AUCs
given different combinations of CM standard deviation (ωσ) and correlation
thresholds (ωρ) for the business rule. The x-axis is plotted on a logarithmic
scale and the black point is the combination for which the model performs
the best. Optimal values can be seen in Table 7.2.

value of ϕσ and report the maximum AUC and corresponding value of ϕσ.
A contour plot of the cross-validated maximum AUC given thresholds for the
standard deviation (ωσ) and correlation (ωρ) respectively is shown in Figure 7.6.
From the plot it seems that the maximum AUC is a rather smooth surface on
which optimal values of ωσ and ωρ can be found as the global maximum. The
optimal value for ϕρ is chosen as the threshold maximizing the F1/2 score, i.e.
choosing precision to have double the importance of recall. The performance of
the intuitive business rule using these values are given in Table 7.2 along with
results from the other models. Optimal threshold parameters are reported in
Table 7.4. As a results of our search for optimal break-points, a contour plot
of the cross-validated maximum AUC for the XGBoost model using different
choices of breakpoints is shown in Figure 7.7. The AUC landscape seems smooth,
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Figure 7.7: Contour plot of the cross-validated maximum ROC AUCs for
the XGBoost model given different combinations of breakpoints for the CM
MER standard deviation (bs(2)) and correlation to the CMC SNR (br(2))
bins respectively in the case of having only two bins for either of the two pa-
rameters. The standard deviation axis is plotted using a logarithmic scale,
and the black point is the combination that lead to the model performing
the best.

meaning that the XGBoost model is robust to choices of breakpoints. Results
for all models are given in Table 7.2 for the case of binary bins and optimal
breakpoints have been found for each model individually using five-fold cross
validation. The corresponding optimal breakpoints are reported in section 7.B.

7.6.2.2 Number of bins for feature-engineered variables

As a results of our grid search for the optimal number of bins for either parame-
ter, a contour plot of the maximum AUC of the XGBoost model given different
combinations of number of bins for each variable is shown in Figure 7.8. From
the figure is seems that the relation is somewhat random with many local max-
ima and minima. Combined with Figure 7.7 it suggests that it is not the number
of bins, but rather the position of break-points that is important.
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Figure 7.8: Cross-validated AUCs for the XGBoost model given different
combinations of number of bins for respectively SDs and correlations.

7.6.2.3 Shapley values for moments features

We calculated the SHAP values for the best performing ML model, XGBoost,
on the moments feature-engineered dataset. The features that had the highest
impact are plotted in a summary plot to interpret the model’s global behaviour.
It can be seen in Figure 7.9.

The figure shows that the Mean Correlation (sc) and Modem Standard Devia-
tions (sm) are the most important features for detection of instances of CPD,
whilst the Skewness of the CMC SNR (µ3(c)) is the least important observed.
When Mean Correlation has high values it has positive SHAP values, suggesting
it drives the models decision towards detecting CPD. Similar behaviour can be
seen for Mean Standard Deviations of modem MER. However, the converse is
true for the Kurtosis of Correlation (µ4(sc)), for example, where high coloured
values result in negative SHAP values, suggesting that it drives the decision of
the model towards a case of CPD.

The SHAP framework also allows for local explanations of the outcome of single
observations. An example of this is provided in section 7.C.
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Figure 7.9: Summary plot of XGBoost model to detect instances of CPD
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7.7 Discussion

In tables 7.2 and 7.3 it is clear that from the models proposed, the XGBoost
model achieves the best accuracy in distinguishing between CPD and non-CPD
cases. We believe that the precision is sufficiently high to be effective for proac-
tive maintenance of the network. In the feature-engineering scheme based on
binning, two bins seem to be sufficient for modelling the problem, if care is
taken to search for optimal break-points. This is shown in Figure 7.8 where
modelling performance does not seem to depend on the number of bins, but
rather on the location of the break-points. This is supported by the fact that
the optimal break-points in the case of binary bins leads to an AUC of 0.960 for
the XGBoost model while the case of numerous bins hardly ever reaches that
performance using the same model. Comparing tables 7.2 and 7.3 we see that
performances for the two feature-engineering schemes are very similar, suggest-
ing that a feature-engineering scheme that properly encodes the distributional
properties of respectively the CM MER standard variation and the correlation
to the CMC SNR is appropriate for modelling CPD.

Looking at the intuitive business rule, we show that the CM MER SDs and
correlations to the CMC SNR have enough information to allow for rather simple
thresholds to obtain comparable results using far less estimated parameters.
ISPs can choose to use the intuitive business rule, as opposed to the other
models, if interpretability, ease of implementation, and ease of training rank
higher than precision of predictions.

In general for all the models, it seems that the recall decreases and the precision
increases as the model complexity increases. This suggests that the challenge
for the models lies in identifying non-CPD observations among instances that
exhibit behavior typically associated with CPD, (i.e. high standard deviations
for CM MER and correlations with CMC SNR) rather than detecting CPD
cases in general.

The distributional moments feature-engineering scheme allowed us to perform
an analysis of which features were most important in detecting CPD cases.
Just as expected by domain experts, the features that contribute the most are
the mean correlation between the CM MER and the CMC SNR, and the mean
standard deviation of CM MER. The analysis also showed that it is not only the
mean correlation, but also the variance of correlations that contributes to the
detection. This suggests that the impact on modems varies further suggesting
that CPD has many faces and is not a straightforward problem.
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7.7.1 Assumptions

The dataset used to train and test the methods described here is assumed to be
representative of real network behaviour and has been balanced in order to allow
for accurate modelling of the problem. This is important as the proportion of
anomalous data to normal data can effect the behaviour of the model.

We make the assumption that if CMs under the same amplifier show anomalous
behaviour at the same time, this is most likely due to a collective fault. This
hypothesis is supported through experimentation and through discussions with
domain experts.

It is assumed that 24 hours of real time measurements is sufficient when detect-
ing instances of CPD. It was important to find a period that is sufficiently long
for the CPD footprint to be measurable, but sufficiently short so that the proba-
bility of the error appearing or disappearing within the period is low. The choice
of 24 hours was informed by domain experts and by examination of known in-
stances of CPD that have been identified. This means that the timepoints of CM
and CMC values are aggregated to a single observation for 24 hours. Windows
never overlap, but due to the fact that the window size is a 24-hour period, two
observations could stem from the same amplifier and modems on consecutive
days when the fault is unresolved on the first day. This introduces unwanted
correlation. However, due to the length of the sampling period and the size of
the whole network, this is unlikely. Although the fact that the parameters are
aggregated by 24 hours could be considered a limitation, it can be considered a
significant improvement over the work in [71], which required 72 hours of data
to detect a case of CPD. We also note that that the algorithms / models pre-
sented here do not depend on information from customer trouble tickets and
are therefore less prone to human error.

7.7.2 Limitations

The methods described here depend on the entirety of the HFC topology being
known i.e. the path from the CMC to each CM must be detectable in order
for the CMs to be aggregated under the last line amplifier. However, for many
service providers, including TDC NET it is not always feasible to know how
each amplifier in the topology is connected. This is due to a variety of reasons,
for example customers changing address and taking their CM to a new address,
the service operator obtaining new networks from other providers, or a part of
the network being operated by private unions. Therefore, in cases where the
network topology is not totally known, the methods are not feasible.



104 Paper A

The dataset was randomly sampled with negative instances of CPD to represent
a realistic balance between the classes. However, samples taken on subsequent
days may not necessarily be independent. As it is unknown when the error was
repaired, it could be possible that an observation that has been labelled negative
is in fact positive.

The data is aggregated to a single observation for every individual date. This
means that if the CPD occurs over the course of two days, but the standard
deviation does not significantly differ on each individual day, the case of CPD is
not detected. This could potentially be fixed by having overlapping instances,
but that is not how the data was acquired for this paper.

The data was labelled after extensive discussion and analysis with domain ex-
perts in the field of HFC networks and verified using specialized equipment in
the field. However, here is a risk that not all cases of CPD in the network were
detected, i.e. false negatives. CPD is not a straightforward problem and there
may be variability in how it manifests itself in the PNM data. As only two PNM
parameters (SNR and RxMER) were utilized in this research, there is a pos-
sibility that symptoms of CPD is present in other PNM parameters that have
not been tested here. Nonetheless, although there may be cases of CPD that do
not present themselves in these parameters, the methods here have successfully
detected a verified number of CPD cases with a low error rate. Failing to detect
less severe cases of CPD might not be problematic, since less severe cases would
also be less of a priority for the customer experience.

7.7.3 Future Work

There are recommendations that could be made to improve the quality of CPD
detection however, including a labelling process where all known cases of CPD
which are detected in historical data are labelled. This would enable a more
thorough examination into the variability of how CPD manifests itself.

Because the detection of CPD is a complex issue, a simplification of the setup
would be valuable. This could be achieved e.g. by simulating the same or
varying degrees of CPD faults in a laboratory or testbed setup with full control
of the network architecture and the network traffic. In this way, a controlled
experiment could be carried out, ensuring the exact location of the fault. This
would result in a high-quality dataset with a known ground-truth that could be
used to investigate the effect of varying degrees of CPD on the PNM metrics.
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7.8 Conclusion

We have created BoCPaD; a novel dataset consisting of 655 manually labelled
observations from the HFC network of TDC NET spanning most of Denmark.
Observations include time series measurements from the CMs and CMCs in the
network and are labelled either prone to CPD (32.4 % of the observations) or
not.

To create a model that can detect CPD from the dataset we propose two dif-
ferent approaches: (1) a feature-engineering approach based on either binning
or calculation of distributional moments of modems with specific behaviour in
terms of relevant variables and subsequent classification using state-of-the-art
ML models, and (2) an intuitive business rule based on thresholds of fractions
of modems with a specific behaviour in terms of relevant variables that we verify
using Shapley-values on the ML models.

We conclude that both approaches accurately model the problem, but that
the feature-engineering approach based on binning achieves higher precision
detecting 77.8 % of the cases with a precision of 92.0 % using an XGBoost
model. We also observe that the accuracy is not very sensitive to the amount of
bins, but rather the location of a specific break-point justifying the sufficiency of
binary bins. We find that both proposed feature-engineering approaches achieve
similar performance.

Our intuitive business rule approach detects 84.8 % of the cases with a precision
of 79.7 % using far less estimated parameters. These results allow for ISPs to
choose a model that is easier to interpret and implement while still achieving
comparable performance.
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Availability

The BoCPaD (Broadband Common Path Distortion) dataset will be made pub-
licly available online.

Compliance with Ethical Standards

This study does not contain experiments with human subjects.

Appendices

7.A Instance Labelling Algorithm

Pseudocode for the instance labelling algorithm is given in Algorithm 7.1.

7.B Optimal Break-Point for Binary Bins

The optimal break-points for the ML models using binary bins in the binned
feature-engineering scheme is provided in Table 7.B.1.

Table 7.B.1: Optimal break-points of the CM MER SD and the CM MER
and CMC SNR correlation respectively for each of the models. Optimal
break-points are found maximizing the cross-validated ROC AUC. Notice
that some values are repeated across models. This is due to the models
searching the same finite grid.

CM MER SD CM CMC Corr.
Logistic reg. .274 .493
Random forrest .471 .493
XGBoost .471 .578
MLP .471 .578
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Algorithm 7.1 Identifying instances for manual inspection / classification
1: X ← Extract minimum downstream SNR for each modem in time from

dataset and arrange as a modems× time array
2: for day in dataset do
3: for amp in last-line amplifiers under CMC do
4: Y ← 0
5: N ← 0
6: for modem in modems under amp do
7: if sd(X[modem, (day− 24H) : day]) > 1.5 then
8: Y ← Y + 1 ▷ Detecting fluctuations

in SNR
9: else

10: N ← N + 1
11: end if
12: p← Y

Y+N
13: if p > 40% then ▷ Enough evidence is

needed
14: Manually inspect and label instance
15: else
16: Continue
17: end if
18: end for
19: end for
20: end for

7.C Example of Local Explainability of an
Observation

In Figures 7.C.1 and 7.C.2, examples of the impact of the features on a single
observation in the data can be seen. The y-axis details the features in decreasing
order of significance. If a point has a positive value that means they it has a
positive impact on the prediction of the class being explained. If it has a negative
value such as the Mean Correlation and the Variance of Correlation then it has
a negative impact on the prediction of class. It can be seen that, in both cases,
three features of the model have a negligible impact.
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Figure 7.C.1: Waterfall plot of XGBoost model on how the features im-
pact a single CPD-positive observation

Figure 7.C.2: Waterfall plot of XGBoost model on how the features im-
pact a single CPD-negative observation
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Abstract

Hybrid Fiber-Coaxial (HFC) networks are a popular infrastructure
for delivering internet to consumers, however, they are complex and
susceptible to various errors. Internet service providers currently
rely on manual operations for network monitoring, underscoring the
need for automated fault detection.

We propose a novel framework for estimating the density of mul-
tivariate time series, tailored for anomaly detection in broadband
networks. Our framework comprises two phases. In the first phase,
we employ an autoencoder based on one-dimensional convolutions
to learn a latent representation of time series windows, thereby pre-
serving context. In the second phase, we utilize a Normalizing Flow
(NF) to model the distribution within this latent space, enabling
subsequent anomaly detection. For efficient separation, we propose
an iterative weighing algorithm allowing the NF to model only the
systematic behavior, thereby separating outlying behavior.

We validated our methodology using a publically available synthetic
dataset and real-world data from TDC NET, Denmark’s leading
provider of digital infrastructure. Initial experiments with the syn-
thetic dataset demonstrated that our density-based estimator ef-
fectively distinguishes anomalies from normal behavior. When ap-
plied to the unlabeled TDC NET dataset, our framework exhibits
promising performance, identifying outliers clustering themselves
away from the high-density region, thus enabling subsequent root
cause analysis.

8.1 Introduction

Hybrid Fiber-Coaxial (HFC) networks are one of the most popular technologies
used to provide a cabled internet connection to customer premises [18]. Though
the technology has been around for many years, continuing development and
the relatively cheap cost of deployment suggest that it will still be an impor-
tant part of digital infrastructure for many years to come. Each customer is
connected to a terminal in its local area through a sequence of coaxial cables
that have connections in street cabinets where the signal can potentially also
be split, branching out to additional customers, or amplified to adjust for the
degradation of signal power caused by resistance in the cables. The so-called
Coaxial Media Converter, hereinafter CMC, connects all the customers in the
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local area to the backbone internet structure using fiber technology and also
acts as a converter between the fiber-optic signals and the coaxial signal used to
transmit data to (Downstream - DS) and from (Upstream - US) the customers.
The coaxial signal is based on an electric Radio Frequency (RF) signal that is
sent through insulated copper wires designed to shield the signal from inevitable
outside RF interference that would otherwise impair the signal. Due to their
high complexity, HFC networks are generally vulnerable and prone to many
different errors constituting e.g. degradation due to stress or corrosion [164],
weather factors such as temperature and humidity [195, 129], improper customer
equipment, outside electromagnetic inference [139, 140] or more abrupt errors
such as when the cables in the ground are physically harmed during excavation
projects [199, 173]. Reliability in broadband networks is described as being of
high importance and many works have investigated how to assess and improve
it [15, 67, 11, 99].

TDC NET which is the biggest provider of digital infrastructure in Denmark
has a fleet of around 800 technicians, as of 2022, driving upwards of 80,000 kilo-
meters every single day to service the network [17]. Presently both remote and
on-site network monitoring are heavily based on manual operations, highlighting
the need for an automatic fault detection algorithm [97]. A good understanding
of the different faults that can occur in the network along with a good anomaly
detection algorithm could potentially improve the daily maintenance in various
ways. For instance, smart information like identification of potentially trouble-
some modems could be used to enhance the technician routing algorithm and
thereby include the condition of the network during planning. This would al-
low for technicians to be dispatched to perform maintenance on nearby areas
while they are already out on a task, reducing unnecessary driving in the fu-
ture. Knowing the location of the error helps in planning, as it allows for the
determination of whether or not a technician would need access to the customer
premises. Additionally, understanding the type of error from a network mon-
itoring perspective ensures that the technician with the appropriate skills will
be sent to address the issue.

Every single modem connected to the HFC network gathers different metrics
and technicians can use the so-called spectrum analyzer to obtain the real-time
Full-Band Capture (FBC) of the modem, i.e. the power of the signal for every
single frequency used to transmit data. This continuous real-time monitoring is,
however, not practical as it would generate a significant volume of data making it
harder to store and analyze. For this reason, the time series data gathered from
a remote monitoring perspective is often aggregated by performing statistics or
summation over some polling period. Performance metrics in the data include
Modulation Error Ratio (MER), power levels of the signal, and the total number
of bits sent including how many of these had to be corrected and how many could
not.
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One of the main challenges in detecting faults in the HFC networks is the miss-
ing ground truth, i.e. no unambiguous labels exist for when an error is present.
The best indication that Internet Service Providers (ISP) have for the presence
of a fault is customer tickets that are created whenever a customer calls to re-
port an impairment in their connectivity. This is, however, not believed to be
an accurate measure because whether or not a customer reports an error and
the time it takes for them to make the report is believed to be more a matter of
personality than of the quality of the signal [33, 77, 130]. This means that an
unsupervised approach to anomaly detection in HFC networks is highly relevant.

Normalizing flows (NFs) are a type of generative model that recently has re-
ceived considerable attention for density estimation/outlier detection building
on a sequence of bijective functions. The use of non-linear bijective functions
for density estimation was first introduced by Dinh et al. in 2014 [47] but has
since been formulated as a general framework for generative modeling first men-
tioned by Rezende & Mohamed in 2015 [154] and popularized by Dinh et al. in
2017 [48].

In numerous cases, NFs have been used for anomaly detection in unsupervised
cases - mainly due to their ability to calculate tractable probabilities and the
assumption that outliers will fall into low-density regions of the input space. Re-
search since then, however, has mostly revolved around images. Many authors
have, however, concluded that out-of-distribution (OOD) anomalies are gener-
ally not well learned by deep generative models because the models are trying to
force the training data into some complex distribution by performing pixel-wise
transformations, which means that they often fail to capture the semantics of
the data and that for instance images of something completely random can be
given a relatively high probability even though the model has not yet seen such
an image [90, 126, 125, 166, 34, 202, 165].

In this work, we propose a framework for unsupervised time series analysis with
an emphasis on outlier detection. Our proposed method is able to detect specific
anomalies in large amounts of telecommunications data and can therefore pro-
vide valuable insights/input to subject matter experts who may subsequently
perform root cause analyses. Inspired by Rezende & Mohamed in [154], we ap-
ply an AutoEncoder (AE) on a time series window of a pre-determined size to
obtain a descriptive embedding while denoising the input signal. We use a 1D
Convolutional Neural Network (CNN) in the encoder model and deconvolutions
in the decoder to preserve contextual information, hence information that can
be deemed critical by a subject matter expert. Subsequently, we apply an NF to
obtain the density of the embedding space. This is unlike the work of Rezende &
Mohamed who derived a common loss for training both simultaneously. In our
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work, however, we will train the two separately due to the preferred simplicity
and the ability to train the NF on its own. We propose a novel algorithm for
iteratively downweighing observations when learning the NF in order to accu-
rately capture only the systematic behavior in the time series, by allowing the
NF to update its weights solely influenced by normal (as expected) behavior
while gradually disregarding anomalous behavior during the training phase. We
perform an explorative analysis of the embedding space of the AE using the
learned densities with the goal of exposing archetypical outlying behavior. We
validate our method using the GHL dataset of multivariate time series and per-
form a purely explorative analysis on the data provided by TDC NET due to
missing ground truth.

The main contributions of this work are:

• A novel framework for modeling the density of time series behavior pre-
serving contextual information.

• A novel algorithm for learning the density of the systematic variation in a
dataset that also includes observations that may contain several types of
outlying behavior.

• A novel algorithm for estimating the cumulative density function (CDF)
of the one-dimensional density of a multivariate distribution using boot-
strapping to be used for visualization purposes.

• An explorative analysis of the outlying behavior of the time series stem-
ming from modems in the broadband network of TDC NET.

8.2 Background and Data

In an HFC network, each customer is connected through a sequence of coaxial
cables interspersed with amplifiers and splitters, usually located in street cabi-
nets arranged in a tree-like structure rooted in the CMC. This means that the
RF signal sent to a customer is a result of the path it traverses from CMC to
the modem or vice versa. The RF signal is sent using a wide band of frequen-
cies divided into different blocks or channels used for either US or DS. Each
modem in the network gathers performance metrics over time, including the
signal power, the Modulation Error Ratio (MER), which indicates the modem’s
ability to interpret the signal, the number of bits sent, the number of bits that
had to be corrected, and the number of bits that could not be corrected. Due
to the size of the network, these parameters are often reported as some statistic
or summation during a poll period.
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Figure 8.2.1: An example multivariate time series from a single modem
from TDC NET. Power, SNR (Signal-to-Noise-Ratio), MTR (Main Tap
Ratio), and MER (Modulation Error Ratio) are all measured in decibels
while the jitter is measured in milliseconds. All the parameters are different
metrics of the quality of the signal.

8.2.1 The TDC NET dataset

The data used in this work is provided by TDC NET which has a broadband
network spanning hundreds of thousands of customer modems. Individual time
series from a total of 785 modems were gathered during the months of June-
September 2022 using a poll period of 15 minutes. No ground truth labeling of
which time series include abnormal behavior has been provided. An example
time series of a subset of the parameters based on a single modem from TDC
NET is shown in Figure 8.2.1. An overview of all the parameters used in this
project is provided in the appendix.

8.2.2 The GHL dataset

To validate our proposed approach, we apply it to the GHL dataset [59]. The
GHL dataset is a simulated dataset based on a Modelica model of a gasoil
heating loop. The authors created a setup based on a set of tanks designed to
slowly heat gasoil and include different sensor measurements gathered in time.
Anomalies consist of hacking attacks where parameters such as the max level
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Figure 8.2.2: Example of the five most influential parameters from the
GHL dataset [59]. HT is the heating tank where the gasoil is heated and
RT is the receiving tank where the gasoil will be pumped to and from while
being heated in portions. The temperatures are measured in Kelvin and
the volume is measured in L.

in a tank or the pumping rate are modified. The dataset consists of one long
multivariate time series where no attack is applied (normal behavior) of length
1,535,118 and 48 independent time series of length approximately 205,000 that
each has an anomaly reported. The authors gathered a total of 270 parameters
but only used the five most influential parameters for their detection algorithm.
These five parameters will also be used in this work. See Figure 8.2.2 for an
example of these five time series parameters.

Because our goal is to find anomalies and not attacks per se, a thorough manual
relabeling has been carried out based on the behavior of the normal time series.
This entails labeling longer-lasting effects of an attack as outlying instead of
only the attack itself and additionally labeling instances if they were observed
rarely (or never in the normal time series).

8.3 Related Work

Because this paper touches upon multiple research problems, many related works
have previously been conducted. In this section, we aim to give a short overview
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of all the work that this paper has been built upon toward the overall aim of
detecting and understanding faults or anomalies in cabled broadband networks.

8.3.1 Fault detection in HFC networks

Many attempts have been made to properly detect or localize faults in the
networks but some of these use FBC data. Zhu et al. used a 1D CNN to
detect a set of known anomalies in the FBC data (for a single time point) in
a supervised way [203]. Gibellini & Righetti used unsupervised clustering to
group modems with similar behavior in order to use topological information to
determine the location of a given fault [65]. Williams derived a test procedure
for detecting a specific type of fault often occurring in HFC networks based on
knowledge about the manifestation of the fault [194]. FBC data, however, is
inconvenient as it requires a tremendous amount of space to store. Additionally,
network owners rarely have access to a fully known and updated topology.

Other works use a dataset more similar to the one provided to us. Of those, some
use trouble tickets registered by the network owner to detect faults. Heiler et al.
use the trouble tickets in a supervised way to detect outliers on the aggregated
data from all modems under a single amplifier using different ML models such
as logistic regression and NNs [71]. Hu et al. use the trouble tickets as hints by
calculating thresholds that maximize the density of incoming tickets at times
where this threshold is exceeded [77]. As already mentioned, trouble tickets
are believed to be prone to uncertainty which means that the performance of a
model using those will be limited - especially if understanding the outliers while
taking into account the contextual information is the goal.

Some works do not use trouble tickets in developing their models. In both the
works by Lartey and by Rupe, technical knowledge of the manifestation of spe-
cific types of errors is used to derive hard thresholds for the parameters [94, 159].
Simple thresholds, however, are believed to be unreliable and cause too many
alarms to overwhelm technicians. Simakovic & Cica detect hard failures (total
loss of connectivity) by looking at sudden drops in the number of users con-
nected to a common amplifier thus constituting a problem [173]. Hard failures,
however, are often easier to detect and act on, whereas the remaining errors
are more difficult to identify while still resulting in impaired connections for
customers.
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8.3.2 Anomaly Detection in Multivariate Time Series

Anomaly detection in time series is the process of tagging anomalous behavior
within a certain time frame [101]. This field is critical for detecting unexpected
changes, flaws, or unusual occurrences that may signify significant events or
issues. It is widely employed in several industries, including telecommunication,
manufacturing, and healthcare. A variety of methods of detecting anomalies in
data have been developed.

Statistical Methods encompass Parametric Models, Non-Parametric Mod-
els, and Similarity-Based Methods. Parametric models assume data originates
from a known distribution, such as distribution-based models [196], multino-
mial distributions for categorical data [168], Markovian models for sequential
data [168, 109], and hybrid models combining multiple distributions [2]. These
models are effective for large datasets due to their consistent complexity and
quick evaluations but depend on accurate distribution assumptions and can
struggle with multidimensional data. Non-parametric models, unlike paramet-
ric models, do not assume a specific data distribution, offering more flexibil-
ity [92]. They adapt their complexity to the data size and intricacy, with exam-
ples including histogram analysis [9] and kernel density estimators (KDE)[168].
Parzen window methods use Gaussian kernels at each data point to estimate
overall density with a single variance hyper-parameter[25]. Depth-based meth-
ods identify anomalies by considering data points’ positions in multidimensional
space, with lower depth points seen as anomalies [160]. Similarity-Based Meth-
ods include Distance-Based, focusing on proximity between data points like
k-nearest neighbors [144, 70], Dissim distance [123], and Dynamic Time Warp-
ing distance [190, 106], and Density-Based, examining local data density, such
as the Local Outlier Factor method [196], Local Sparsity Coefficient [110], and
Multi-Granularity Deviation Factor [131].

Clustering-Based Methods detect anomalies by identifying data points that
do not fit well into clusters, typically in two phases [1]. First, a clustering method
such as K-Means [200], Fuzzy C-Means (FCM)[179], or other techniques[137,
107, 156] is applied to generate subsequences of multivariate time series. In the
second phase, an anomaly score is calculated based on how well subsequences
fit the clusters, often using the distance between subsequences and cluster cen-
ters [86]. Other approaches involve computing weighted Euclidean distances,
using an improved ant colony method for clustering [153, 46], and a novel
method that reduces time complexity by using K-Means to convert a corre-
lation matrix into clusters, estimating anomaly scores from multivariate normal
distributions [141]. These models do not require prior data knowledge but rely
on identified clustering centers and often face high time and space complexity.
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Classification-Based Methods use labeled data to distinguish between nor-
mal and anomalous instances, making them a supervised approach. A classifier
is trained on a dataset of normal instances and assigns an anomaly score to
each instance in the testing set [28]. These methods identify anomalies based
on patterns learned from the training data. Examples include using a linear
regression model followed by a Bayesian maximum likelihood classifier to detect
anomalies [4, 78]. The k-means clustering algorithm and its variations, like fuzzy
c-means and probabilistic c-means, are also used in this context [10, 169, 83].
Other models include Self-Organizing Maps (SOM), Expectation-Maximization,
Find Out, CLAD, and CBLOF [73]. These methods generally offer higher de-
tection accuracy than unsupervised detectors but require time-consuming data
collection and labeling. And we do not have accurate labels, so these methods
are not the best option for this case.

Transformation-Based Methods simplify data complexity to facilitate anomaly
detection. Common techniques include time series projection and independent
component analysis (ICA) to reduce dimensionality and speed up computa-
tion [72, 5]. Another method involves using principal component analysis (PCA)
to measure novelty dissimilarity in multivariate time series, combining distance,
rotation, and variance components [133]. These methods can simplify analy-
sis and enhance computational efficiency but risk losing critical information,
potentially reducing anomaly detection accuracy.

Modeling-Based Methods, or Machine Learning-Based Methods, in-
clude supervised, unsupervised, and semi-supervised approaches that use ad-
vanced techniques to identify anomalies by modeling intricate data relation-
ships and temporal dependencies. These methods are highly flexible and adapt-
able, making them suitable for complex datasets. Examples include using a
Hidden Markov Model (HMM) for anomaly detection in multivariate time se-
ries [102], and enhancing HMM with PCA, FCM, Sugeno Integral, and Choquet
Integral [103]. Another model learns graphical models of Granger causality
and uses Kullback–Leibler (KL) divergence to compute anomaly scores with a
multi-scale convolutional recurrent encoder–decoder [142, 201]. Cheng et al.
proposed a weighted graph representation for multivariate time series, using the
RBF function for similarity [5, 56]. Neural networks, known for their robust-
ness and accuracy, are used for forecasting medical time-series data and stock
market prices [20, 21]. Multi-Layer Perceptron (MLP) models learn complex
time dependencies, while Recurrent Neural Networks (RNNs), including Long
Short Term Memory (LSTM) networks, excel in time-series forecasting [22, 26,
177, 79]. Temporal Convolution Networks (TCN) address some limitations of
LSTM in modeling time series [7, 183]. Despite their advantages, these meth-
ods require significant computational resources and time to train and implement
effectively [38].
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Most of the described and existing techniques primarily focus on univariate time
series (UTS), analyzing only a single variable and often overlooking the com-
plexities of multivariate time series (MTS). This narrow focus simplifies anomaly
detection but fails to address the intricacies involved in handling multiple vari-
ables simultaneously, which significantly increases the difficulty of the detection
process. Furthermore, these techniques predominantly target point anomalies
and frequently disregard the contextual information that is crucial for accurate
anomaly detection. The lack of attention to context and the relationships among
variables in MTS limits the effectiveness of these methodologies thus highlight-
ing the need for more advanced approaches that can manage the complexity and
provide a more comprehensive analysis.

8.3.3 Normalizing Flows for time series

Normalizing flows are generative models that transform complex real-world data
distributions into simpler, known distributions, like the Gaussian (normal) dis-
tribution, through a sequence of easily invertible and differentiable transforma-
tion functions. Initially, Rezende et al. (2015) introduced a novel method for
specifying approximate posterior distributions for variational inference by learn-
ing transformations of simple densities into complex ones by using a Normalizing
Flow [154]. Dinh et al. (2016) introduced RealNVP, a foundational normaliz-
ing flow architecture for density estimation, which efficiently transforms data
by stacking a sequence of invertible bijective transformation functions, called
coupling layers, that apply affine transformations of scale and shift to subsets
of a first data dimensions based on the remaining data dimensions [48]. The
NICE model, a predecessor of RealNVP, employed a series of invertible trans-
formations known as additive coupling layers, which focus on preserving volume
through simpler affine transformations without the scale term [47].

Various extensions and improvements were proposed such as the Glow model
that builds on NICE and RealNVP by introducing invertible 1× 1 convolutions
to replace the reverse permutation operation, enhancing the expressiveness and
efficiency of the generative process while simplifying the architecture for syn-
thesizing high-resolution natural images [88]. The Masked Autoregressive Flow
(MAF) by Papamakarios et al. (2017), a generalization of the RealNVP ap-
proach, views an autoregressive model as a normalizing flow, using the Masked
Autoencoder for Distribution Estimation (MADE) to build the transformation
layer as an autoregressive neural network. This approach enables fast den-
sity evaluations and training on parallel computing architectures, though it is
computationally expensive to invert for sampling high-dimensional data [132].
Hoogeboom et al. (2019) extend the Glow model by generalizing 1× 1 convolu-
tions to more flexible invertible d× d, where d represents the kernel size, oper-
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ating on both channel and spatial axes. This approach demonstrated through
chaining specific autoregressive convolutions and decoupling in the frequency
domain, significantly enhances the performance of generative flow models, espe-
cially on galaxy images [74]. These foundational works on normalizing flows laid
the groundwork for the field, yet none specifically addressed their application
to multivariate time series or time series in general. For that purpose, other
research has emerged to fill this gap.

Rasul et al. (2021) introduced one of the first time series forecasting models
using conditional normalizing flows. The work models the multivariate tempo-
ral dynamics of time series via an autoregressive deep learning model, where
the data distribution is represented by a conditional normalizing flow. This
approach combined the extrapolation strength of autoregressive models with
the flexibility and high-dimensional distribution modeling capabilities of nor-
malizing flows [149]. Graph-Augmented Normalizing Flows (GANFs) enhanced
normalizing flows for anomaly detection in multiple time series by incorporat-
ing graph structure learning with Bayesian networks. This approach uses a di-
rected acyclic graph (DAG) to model causal relationships, factorizing the joint
distribution into conditional densities, which addresses high dimensionality and
interdependency challenges, making GANFs effective for detecting anomalies
in low-density regions [39]. Guan et al. (2023) introduced the Attention Fac-
torization Normalizing Flow (AFNF) algorithm for unsupervised multivariate
time series anomaly detection, utilizing a factorization strategy in the time and
attribute dimensions to convert joint probabilities into manageable conditional
probabilities. Then, the conditional normalizing flow (MAP) was used to eval-
uate the conditional density produced by the factorization and thus perform
anomaly detection [68].

8.4 Methodology

In this section, we present our proposed framework for modeling the distribution
of systematic behavior in a time series dataset. We first present our proposed
approach for turning a set of time series windows into a latent representation
and subsequently into their densities. Additionally, we present an algorithm for
iteratively down-weighing outliers allowing for the learned distribution to model
only the systematic behavior. Lastly, we present an algorithm for estimating
p-values for a single observation (a time multivariate time series window from
a specific modem) based on the estimated cumulative density function of the
learned densities.
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Figure 8.4.1: Depiction of the Window Creation Process for Time-Series
Data. The colored lines represent different features data streams over time,
with each dashed line indicating the start of a new time interval. Overlap-
ping windows of size ω are created at intervals of τ for subsequent analysis,
allowing for continuous monitoring and processing of the data streams.

8.4.1 Modeling Time Series Behavior

We first apply an AE based on one-dimensional convolutions that encodes the
multivariate time series into a vector of embeddings while preserving contextual
information [93]. Subsequently, we train an NF to accurately model the com-
plex density of the resulting latent space. The AE requires a fixed-size input,
thus preprocessing of the time series into windows is required. This does, how-
ever, make the method ideal for post-hoc analysis of the representation of the
windows. Preprocessing the input time series into a set of windows introduces
two hyperparameters: window size, ω, and the stride, τ (see Figure 8.4.1). To-
gether, these parameters determine the amount of overlap or distance between
consecutive windows, which in turn affects how independent observations from
the same time series instance become.

Let X1,X2, . . . ,XN be the individual observations consisting of multivariate
time-series windows of size ω × ∆, where ω is the window size and ∆ is the
number of dimensions in the input. Notice that windows from different modems
are created individually and concatenated to form a single set of time series
windows. The AE is trained by minimizing the reconstruction error:

argmin
ϕ,θ

1

N

N∑
i=1

(
Xi −Dθ (Eϕ (Xi))︸ ︷︷ ︸

X̂i

)2
where Eϕ : Rω×∆ → Rδ, Dθ : Rδ → Rω×∆

(8.1)
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Eϕ is the encoder designed to transform the input time series into a latent
vector of length δ and Dθ is the decoder designed to transform a δ-dimensional
vector into a multivariate time series of the same size as the input. Ideally, δ
should be chosen small in order for the latent space to be a lower-dimensional
representation of the input time series:

Eϕ(Xi) = ei (8.2)

After having learned the AE, the encoder is used to calculate the δ-dimensional
embedding for each observation. We then train an NF to learn the complex
distribution of this embedding space based on the Masked Autoregressive Flow
(MAF) model introduced by Papamakarios et al. in 2017 [132]. In this type of
model, a set of invertible transformations, f1, f2, . . . , fK are sequentially applied
to the data from a multivariate standard Gaussian distribution. The transfor-
mations will successively turn the standard Gaussian distributed data into the
complex distribution of the original data space. That means that in our case:

e = fK ◦ fK−1 ◦ · · · ◦ f1(z) where z ∼ N (0, I) (8.3)

Ensuring the invertibility of these functions means that we can calculate the
density of an observation in the original space by applying the change-of-variable
formula. Let uk be the output of fk which means that uK = e and let u0 = z.
Then we have:

p(e) = p(z)

K∏
k=1

∣∣∣∣det ∂fk(uk−1)

∂uk−1

∣∣∣∣−1

⇕

log p(e) = log p(z)−
K∑

k=1

log
∣∣∣∣det ∂fk(uk−1)

∂uk−1

∣∣∣∣
(8.4)

This means that we calculate exact probabilities using only the simple distri-
bution of z and by calculating the derivatives of the transformations applied to
it. Additionally, we can sample from the original (input) space by generating
random numbers from the simple distribution, Z, and applying the sequence of
transformations.

In the MAF model presented in [132], each of the invertible transformations fk
is based on an autoregressive model on the input vector uk in which the jth
conditional is parametrized as follows:

p(uk,j |uk,1:j−1) = N
(
uk,j | tk,j(uk,1:j−1),

(
esk,j(uk,1:j−1)

)2)
(8.5)

Where tk,j and sk,j are scalar functions computing, respectively, the translation
and scale of the given conditional given all previous values of the vector. This
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means that we can generate data from the modeled distribution using random
data from the previous distribution in the sequence using the following recursion:

uk,j = uk−1,j · esk,j(uk,1:j−1) + tk,j(uk,1:j−1) (8.6)

Which also gives us the transformation uk = fk(uk−1) that is easily inverted
using the following recursion:

uk−1,j = (uk,j − tk,j(uk,1:j−1)) · e−sk,j(uk,1:j−1) (8.7)

Because the conditional functions are built from simple scaling and translations,
the determinant of the derivative of the transformations can be easily calculated
by multiplying the scaling factors:∣∣∣∣det ∂fk(uk−1)

∂uk−1

∣∣∣∣ = exp
∑
j

sk,j(uk,1:j−1) (8.8)

This means that we do not need the derivates of sk,j and tk,j meaning that these
can be arbitrary complex neural network functions with parameters ξk,j and
ψk,j , respectively. By substituting (8.8) into (8.4), the density of an observation
is easily computed and used to train the NF by minimizing the log-likelihood
across all observations in the training set:

argmin
S,T

−
N∑
i=1

log p(ei) (8.9)

where S = {ξk,j | k = 1 . . .K, j = 1 . . . δ} and T = {ψk,j | k = 1 . . .K, j = 1 . . . δ}
are the weights of the NF. Our framework for modeling the density of time series
behavior is illustrated in Figure 8.4.2.

8.4.2 Learning only the systematic behavior

Though the NF has proven good at estimating densities of complex distributions,
it does this using a relatively naïve objective. Namely, trying to force the whole
dataset into a simple and well-known distribution like the Gaussian. This means
that outliers or OOD observations will also be forced into this distribution,
possibly limiting the quality of the modeling of the systematic behavior which
is often more desirable.

We propose iteratively downweighing low-density observations in order to allow
the NF to learn only the systematic behavior of the time series. In this way, rela-
tively unlikely, but unproblematic behavior will be more appropriately encoded
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Figure 8.4.2: Illustration of our proposed framework consisting of two
phases. In Phase 1, an AE is trained to accurately model the input time
series windows (appropriately preprocessed from the full data see illustra-
tion in Figure 8.4.1) using a latent vector. In Phase 2, the density of the
distribution of these latent vectors is estimated using an NF.

into the low-density zones of the distribution, while the OOD observations will
be truly outlying (having near-zero probability).

Let e1, e2, . . . , eN be the latent vectors of the encoded time series achieved by
(8.2) and let w0 = (1, 1, . . . , 1) be the vector of length N initiated to be ones.
We propose learning the NF by minimizing the negative log-likelihood as given
in (8.9) but also using the weight vector:

argmin
S,T

−
N∑
i=1

log p(ei) · wi (8.10)

At each iteration of the algorithm, after training the NF until convergence, we
propose identifying the fraction, ϵ, of the observations with the lowest densities.
We propose decreasing the weights of these observations by a constant value, γ.
In other words, we let d = (p(e1), p(e2), . . . , p(eN )) be the vector of densities for
all observations and use this to find the ϵth quantile, d(⌊ϵN⌋). Then we update
the weights accordingly:

w∗
j =

{
max(wj − γ, 0) if p(ej) ≤ d(⌊ϵN⌋)

wj otherwise
(8.11)

These updated weights are then used to train a new and randomly initiated NF
by optimizing (8.10). This iterative process is continued until the fraction of
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observations that have a zero weight passes some predetermined threshold, α. It
should be mentioned that observations with zero weight should not be counted
when calculating the quantile of the densities. Pseudo-code for the algorithm is
provided in Algorithm 8.1.

Algorithm 8.1 Iterative downweighing algorithm
1: procedure systematicBehavior(E = [e⊤1 , e

⊤
2 , . . . , e

⊤
N ], ϵ, γ, α )

2: w = [w1, w2, . . . , wN ]← [1, 1, · · · , 1] ▷ Initialize the weight vector
3: N0 ← 0 ▷ Number of zero-weight observations
4: while N0 < αN do
5: S ← Initialize randomly ▷ Initialize weights of the

scaling models of the NF
6: T ← Initialize randomly ▷ Initialize weights of the

translation models of
the NF

7: S, T ← argmin{S,T } −
∑N

i=1 log p(ei) ·wi ▷ Train NF model until
convergence

8: d← [p(e1), p(e2), . . . , p(eN )] ▷ Calculate densities us-
ing the NF model

9: qϵ ← d(⌊ϵN+N0⌋) ▷ Calculate the ϵth quan-
tile excluding zero
weight observations

10: for i = 1 . . . N do
11: if di ≤ qϵ then
12: wi ← max(wi − γ, 0) ▷ Update the weight if

the density is under the
threshold

13: if wi = 0 then
14: N0 = N0 + 1
15: end if
16: end if
17: end for
18: end while
19: return S, T
20: end procedure

8.4.3 Estimating p-values using Bootstrapping

Due to the complexity and discontinuity of the distributions that the NF learns,
densities are not readily interpretable. We propose an algorithm based on boot-
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strapping for calculating p-values from observation densities (or log densities)
for later interpretation. Assuming that the density of the complex distribution
is well modeled by the NF, we can use the NF to generate random samples from
it including densities in the original space. Generating a very large number of
samples in the original space enables us to estimate the one-dimensional CDF,
FD of the density distribution, D. This function can later be used as a p-value
estimator when given a density. For an accurate estimate of the CDF of the
densities, the number of random samples, U , should be chosen big and signif-
icantly bigger than the number of observations, U >> N . The algorithm is
outlined in Algorithm 8.2.

Algorithm 8.2 P-value estimation algorithm
procedure pValueEstimator(S, T ,K, δ, U)

Ũ0 ← sample U × δ values from N (0, 12)
for i = 1 . . .K do

Ũi ← perform recursion, (8.6), using Ũi−1 and weights in S and T
end for
d← log

(
N
(
Ũ0 |0δ, Iδ×δ

))
−
∑K

i=1

∑δ
j=i sk,j(uk,1:j−1)

▷ Combining (8.4) and
(8.8)

d← sort(d) ▷ Sorting the samples
from the density distri-
bution, D

F̃D(d) = P (D ≤ d)← 1
U

∑
U I(d ≤ d) ▷ Estimate the CDF using

the indicator function, I
return F̃D

end procedure

8.5 Experiments and Results

In this section, we discuss the experiments used to validate the proposed method
and report the results. In sections 8.5.1 to 8.5.3 we validate our proposed ap-
proach on the GHL dataset due to the ground truth being known. In sec-
tion 8.5.4 we perform an explorative analysis on the broadband dataset from
TDC NET.
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Table 8.5.1: Performance of the learned density of our proposed frame-
work as an estimator for outlyingness reported as the mean and standard
deviation over six repetitions.

Curve AUC
ROC 0.963 (±0.016)
PR 0.731 (±0.077)

Figure 8.5.1: Example of three parameters of the GHL dataset plotted
in time along with the estimated p-values plotted on a log scale including
ground truth labels.

8.5.1 Density as an Estimator

We validate the learned densities of our framework on the GHL dataset with
known labels (without weighing as described in (8.9)). We report the classi-
fication performance using density as an estimator by reporting the Receiver-
Operator Characteristic (ROC) Area Under the Curve (AUC) and Precision-
Recall (PR) AUC, respectively, as the mean and standard deviation over six
repetitions with random initialization of the NF. Table 8.5.1 shows the results
that show that our learned densities can be used to detect anomalies quite accu-
rately. Figure 8.5.1 shows an example of a time series plotted with the estimated
p-values resulting after applying Algorithm 8.2. This plot also shows that the
density is a good estimator for outlyingness including an interpretation in the
shape of p-values that are very low when an outlier is present.
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8.5.2 Systematic Behavior Algorithm

We validate our proposed algorithm for learning only the systematic behav-
ior on the (relabeled) GHL dataset. We find the optimal configuration of the
AE to learn representative embeddings. Subsequently, we apply our proposed
approach (Algorithm 8.1) using hyperparameters ϵ = 0.01 (fraction of down-
weighted observations) and γ = 0.1 (constant weight decrease). We execute
six repetitions of our algorithm with new and random initializations for each
one. After every iteration in the algorithm, we report the performance of the
intermediate model by calculating the Area Under the Curve (AUC) of the
Precision-Recall (PR) curve when using, respectively, the learned density and
the Mahalanobis distance ([117]) in the normalized (z) space as predictors of
outlyingness. We consider an observation to be anomalous if any of the time
points in the corresponding time series window is labeled as being outlying. We
use the PR AUC due to the imbalance of the classes in the dataset (4.3% of
the observations are labeled as anomalous). Figure 8.5.2 shows the performance
of the intermediate models as a function of iterations along with the fraction
of observations excluded after each one. From the figure, it is evident that the
Mahalanobis distance becomes an increasingly better estimator for outlyingness
effectively meaning that outliers are pushed away from the (high-dimensional)
bell curve in the normalized space. This happens seemingly without a loss of
performance of the density as an estimator. The figure also shows that the
performance is maximized not long after the actual fraction of anomalies in the
dataset have been excluded by the algorithm whereafter the PR AUC of the
density seems to fall slightly. The performance of the algorithm does, however,
seem to be rather robust to the number of iterations.

For one of the repetitions of the above results, we further plot the evolution of
Mahalanobis distances for different degrees of anomalous behavior. We do this
by splitting the time series windows into one of four groups based on the frac-
tion of time points labeled as anomalous. Figure 8.5.3 shows the evolution of
Mahalanobis distances for the four groups as a function of the iteration. From
the figure it is clear that non-anomalous observations keep having a low Ma-
halanobis distance, meaning that they remain in the center of the bell curve.
Interestingly, partially anomalous observations are pushed far away from the
center while entirely anomalous observations seem to remain in the tails of the
bell curve in the normalized z-space. This could suggest that changes from
normal to abnormal behavior or vice versa are more unlikely, thus being pushed
further away while entirely abnormal observations are kept as more systematic
abnormal behavior. It further seems that the non-anomalous observations are
pushed closer to the center of the distribution. This is, however, more a re-
sult of the distribution used to calculate the Mahalanobis distance changing
characteristics.
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Figure 8.5.2: Performance of learned density and Mahalanobis distance
in the normalized (Gaussian) space as predictors for abnormality on the
GHL dataset. PR AUCs are reported as the mean and standard deviation
over six repetitions. The bottom plot shows the fraction of corresponding
observations found to have a weight of zero as a function of the iterations.
Reported as the mean over six runs. The uncertainty has been omitted due
to insignificant fluctuation.

Figure 8.5.3: Grouped distributions of Mahalanobis distances in the nor-
malized space as a function of iterations of the proposed method on the
GHL dataset. Reported as the median in the group based on the degree
of abnormality. The intervals (shaded areas) are bounded by the 25th and
75th quantiles, respectively.
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8.5.3 Clustering Abnormal Behavior

It is evident that our systematic behavior algorithm causes outliers to be pushed
out of the distribution. If we assume that different types of anomalies exist that
have each their unique characteristic, it would mean that the outliers would be
close in the embedding space (e) and consequently also in the normalized (z)
space. This further means that the outliers being pushed out by the algorithm
will arrange themselves in clusters in the space around the bell curve. We use a
Principal Component Analysis [116] (PCA) because the observations normalized
by the learned flow no longer follow a multivariate standard normal distribution.
Hence, we expect to localize outliers and respective clusters easily in a lower
dimensional representation using a few principal components.

Using the GHL dataset, we perform a PCA analysis on the normalized embed-
dings using the NF learned by applying Algorithm 8.1 with 80 iterations. Fig-
ure 8.5.4 (left) shows a scatter plot of the two most influential principal compo-
nents, out of approximately six significant components including six highlighted
example observations visually identified to belong to one of three clusters. The
three first parameters of the GHL dataset are plotted for each of these three
groups including some time points before and after for visualization and context
purposes. We visually identify the anomalies prone to each of the three groups.
In the blue group, the RT level is raised causing the temperature of the RT to
drop more than usual. In the orange group, the temperature of the HT is un-
usually raised. In the green group, the temperature of the RT is not decreased
as much as usual after the target temperature has been reached. These findings
seem promising for clustering anomalous behavior which can subsequently be
used for root cause analysis.

8.5.4 Explorative Analysis of the Broadband Dataset

We train a model using our proposed framework, however, making sure that
phase one (the AE) reaches appropriate performance keeping in mind that real
data is often noisy and thus harder to capture in a latent representation. An
example of a subset of the variables from a time series from the TDC NET
dataset is shown in Figure 8.5.5. The figure shows that our model accurately
captures that the modem has some connectivity issues at the later time points.
Since neither the MTC or the DS MER variables seem outside of the ordinary,
it seems that the modem is struggling with the US connection. This is also
evident from the fluctuations in the US SNR parameter during the same period.
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Figure 8.5.4: Six examples of time series windows from the GHL dataset
(right) from three different clusters identified visually in the scatter plot
(left) showing the two most influential principal components of the PCA,
explaining 14.81%, respectively, 9.62% of the total variation in the data.
Notice that the observations correspond only to the colored part of the time
series and have been plotted including time points both before and after
for visualization purposes. The anomaly of the blue group is a raised RT
level, the orange group, a heightened temperature in the HT, and the green
group, an RT that is not fully cooled down.
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Figure 8.5.5: Example of the time series from a modem from the broad-
band dataset of TDC NET including estimated p-values calculated using
a sliding window. It seems that the given modems has a slightly impaired
connection in the later time points which is accurately captured by our
model. P-values are estimated using Algorithm 8.2.
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We additionally deploy our systematic behavior algorithm to the TDC NET
dataset. Since we do not have a good indication of the amount of errors present
in the data, we choose to stop after 14 iterations at which just under 1 % of the
observations have been removed. As for the GHL dataset, we assume that the
excluded observations fall outside the bell curve and arrange themselves in clus-
ters. To analyze these clusters we perform a PCA analysis on the normalized
embeddings of the observations. Figure 8.5.6 shows the two most influential
components plotted against each other of approximately six significant compo-
nents (left). From this plot, a number of anomalous groups have been visually
identified and example time series plotted (Figure 8.5.6 right) on a number of
informative variables. It seems that each group corresponds to a certain type
of fault or anomalous behavior. The blue group seems to correspond to the
sudden improvement of the signal which is visible in both the FLAP parameters
and the jitter. This means that the modem goes from being unresponsive and
taking a long time to transmit messages to work well. The opposite is the case
for the yellow group which seems to correspond to the sudden occurrence of an
impairment of the signal. Lastly, the green group corresponds to a peak in the
number of FLAP misses (modem becomes unresponsive) along with a sudden
fall in the US SNR. This could mean that the US path (cabling) is impaired or
noisy, hence does not allow for the modem to transmit messages effectively.

8.6 Discussion

Our results are promising meaning that our two-phased approach seems to be
able to accurately capture the distribution of the behavior of a multivariate time
series. This is both evident from the results provided in Table 8.5.1 that show
promising classification performance when distinguishing between normal and
abnormal behavior and from Figure 8.5.1 that illustrates the estimated p-value
as a function of time. Our p-value estimation algorithm allows for interpretation
of the densities learned by our model using a statistical context but making no
assumptions apart from the NF model having accurately learned the density
of the distribution. Our systematic behavior algorithm seems to be accurately
penalizing outliers which is evident from both Figures 8.5.2 and 8.5.3 where it
is shown that the performance of the Mahalanobis distance of the observations
in the normalized space as a predictor for outlyingness increases as a function
of the number of iterations used in the algorithm. This is additionally accom-
plished without a decrease in the performance of the density as a predictor of the
same outcome. From Figures 8.5.4 and 8.5.6 we observe that the outliers that
are pushed away from the bell curve arrange themselves in clusters correspond-
ing potentially to the underlying root cause responsible for their outlyingness.
Actual root cause analysis would have to be performed subsequently in cooper-
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Figure 8.5.6: Six examples of broadband time series windows (right) from
three different groups of outliers visually identified from the scatter (left)
showing the loadings of the two most influential principal components of the
applied PCA, explaining 10.86%, respectively, 6.34% of the total variation.
Notice that the observations correspond only to the colored part of the time
series that have been plotted including some observations both before and
after for visualization purposes. It seems that the blue group corresponds
to the disappearance of an impaired signal (maybe due to reparation), the
yellow to a sudden occurrence of an impaired signal, and the green to peaks
in the number of FLAP misses (modem becomes unresponsive) along with
a decrease in the US SNR. The concentrated group in the upper left corner
corresponds to constant time series due to long sequences of missing values
for the upstream parameters.
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ation with domain experts to validate the findings. Especially in Figure 8.5.6
we also see how our proposed approach preserves contextual information since
it can distinguish between the appearance and disappearance of a fault in the
given window.

Though this paper shows promising results, training the models and identifying
the underlying root causes are not trivial tasks. Multiple assumptions need to be
made and various hyper-parameters need to be set that are not easy to optimize
- especially not when there is no ground truth and the domain knowledge of the
data is limited. Some of the more crucial parameters have to do with the pre-
processing of the data since the length of the time series windows, ω, becomes
the scale at which the behavior is modeled. The window size needs to be chosen
such that the occurrence of an error does not become irrelevant in terms of
the full window while still containing enough information to be able to make
it out. Therefore a good understanding of the domain of the time series is
valuable. The window stride parameter, τ , determines the correlation between
consecutive windows. If data are abundant, τ can be chosen such that there is
a gap between windows for minimum correlation between observations. On the
other hand, if the amount of data is limited, correlation in the form of overlap can
be introduced to increase the number of resulting windows. However, making
τ too small resulting in many repeated data points could increase the risk of
overfitting. When pre-processing the input time series from multiple sensors
one also needs to consider that these time series can be correlated in time or
can be prone to different systematic behavior. If data from multiple sources
is included, the overall behavior of all the sources is modeled simultaneously
which could help unfold errors common to all sensors while sacrificing accurate
modeling of the behavior of the individual sources.

Our proposed systematic behavior algorithm seems robust to hyper-parameter
values. Lower values of ϵ and γ give observations more potential to stay in
the distribution while taking longer (more iterations) to obtain a fraction of α
observations excluded. α itself is another hyper-parameter that is very hard to
choose without knowing how many of the time points are actually anomalous.
From Figure 8.5.2 it seems that α should be chosen to be close to the actual
fraction of time points or perhaps a bit higher to optimize the performance of
the algorithm. However, again the algorithm seems robust to higher values of
α.

Our two-phase approach to learning the distribution of behavior of multivari-
ate time series assumes that it is sufficient to learn a single AE that provides
an accurate latent representation of the time series. This AE should be chosen
complex enough to accurately capture the important fluctuations while prevent-
ing overfitting. The architecture could benefit from considering multiple scales
as proposed by Shi et al. in 2022 [170] which we leave for future work.
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8.7 Conclusion

We propose a novel framework for estimating the density of the behavior of
multivariate time series to be used for remote anomaly detection in broadband
networks. The proposed framework consists of two phases. In phase one, a latent
representation of the distribution of time series windows is learned using an AE
based on one-dimensional convolutions for preserving contextual information.
In phase two, we apply an NF to learn the complex distribution of the latent
space.

Our approach shows promising results with the learned density achieving a
mean PR-AUC of 0.731 on the publically available GHL dataset when used as
an estimator to distinguish anomalies from normal behavior in multivariate time
series whilst preserving contextual information. We propose an algorithm for
estimating the p-value of an observed window enabling statistical interpretation
and meaningful visualizations. We use this to perform an explorative analysis
of time series data gathered remotely from an actual broadband network.

Furthermore, we utilize the two-phased structure of our approach to develop an
algorithm for learning only the systematic behavior in a dataset. This is done
by iteratively down-weighting observations falling into low-density regions of the
distribution. We show using both datasets that this algorithm not only pushes
the outliers out of the high-dimensional bell curve in the normalized space (the
NF base representation) but also that the outliers arrange themselves in clusters.
These clusters can be used to group similar abnormal behavior and subsequently
be connected to root causes, for instance, in cooperation with domain experts—
creating immense value for the network owners.
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Appendices

8.A Overview of parameters in the TDC NET
dataset

In the following, we provide an overview of the different parameters in the
TDC NET dataset that were used for the analysis. More information on the
parameters and the technology can be found in [158].

FLAP_HIT_MISS_RATIO Ratio of flapping messages that are read. If the CMC re-
sponse is completely missing or takes more than 25 ms, flap misses increase
by one, whereas a successful response increases the hits by 1. Provided as
a ratio (percentage).

PACKET_LOSS_RATE Ratio (percentage) of packets that have been lost during
transmission.

FLAP_INS Total accumulated attempts to re-register with the CMC outside the
defined configuration, which is generally unwanted and could point to
communication problems. Interpretation: Normal: < 2, Major: 2-5,
Critical: > 5 (accumulated during 24 hours).

FLAP_POWER_ADJUSTMENT Total accumulated automatic power adjustments of
the modem due to unstable signal levels indicating problems in the net-
work/return path. Interpretation: Normal: < 20, Major: 20-50, Crit-
ical: > 50 (accumulated during a period of 24 hours).

JITTER Variation in packet delay given in milliseconds [ms]. Interpretation:
Normal: < 30, Major: 30− 150, Critical: > 150.

LATENCY How long it takes for a package to arrive after having been requested
[ms]. Interpretation: Normal: < 100, Major: 100 − 150, Critical:
> 150.

FLAP_CRC_FAILURE Total accumulated Cyclic Redundancy Checks (CRC). Modems
with high CRC errors have bad upstream paths. Interpretation: Normal:
< 50, Major: 50− 150, Critical: > 150 (accumulated ins 24 hours).

FLAP_SERIOUS_MISS_NUM_DIFF The number of serious FLAP misses since the
last poll.

UNSTABLE_CONNECTION_NUM_DIFF Accumulated Sum of metrics that constitutes
an unstable connection. Interpretation: Normal: < 5, Major: 5 − 15,
Critical: > 15.
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MISSING_CM Whether data from one of the three combined tables was missing
(1) or not (0).

DS_AVG_RX_POWER Average downstream received power during the last poll pe-
riod [dB].

DS_AVG_RX_MER Average downstream received Modulation Error Ratio (MER)
during the last poll period [dB].

DS_SUM_CODEWORDS Total sum of received codewords during the last poll cycle.

DS_SUM_CORRECTED_CODEWORDS Total sum of codewords that were successfully
corrected during the last poll cycle. Interpretation: Normal < 20%,
Major: 20− 50%, Critical: > 50%.

DS_SUM_UNCORRECTED_CODEWORDS Total sum of codewords that could not be
successfully corrected during the last poll cycle. Interpretation: Normal:
< 1%, Major: 1− 3%, Critical: > 3%.

DS_UNCORRECTED_CODEWORD_PCT Total ratio of codewords that could not be cor-
rected given as a percentage of the total codewords. Interpretation: see
above.

DS_MIN_RX_POWER Minimum downstream received power during the last poll
cycle [dB].

DS_MAX_RX_POWER Maximum downstream received power during the last poll
cycle [dB].

DS_MIN_RX_MER Minimum downstream Modulation Error Ratio (MER) during
the last poll cycle [dB].

DS_MAX_RX_MER Maximum downstream Modulation Error Ratio (MER) during
the last poll cycle [dB].

MISSING_DS Whether data from one of the three combined tables was missing
(1) or not (0).

MTR Main Tap Ratio - the ratio of energy in the main tap to the energy in all
other taps combined. Measured in decibels [dB].

SNR_US Signal-to-Noise Ratio (SNR) in the upstream signal. Measured in deci-
bels [dB]. Aggregated at the CMC level, hence quite similar for all modems.

MTC Main Tap Compression - This metric is given by the ratio of the energy in
all taps to the main tap energy and is measured in decibels [dB]. An MTC
ratio greater than 2 dB may suggest that equalization compensation can
no longer be successfully achieved. Interpretation: Normal: < 1 dB,
Major: 1− 2 dB, Critical: > 2 dB.
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MISSING_US Whether data from one of the three combined tables was missing
(1) or not (0).
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Abstract

We consider the task of reconstructing the cabling arrangements of
last-mile telecommunication networks using customer modem data.
In such networks, downstream data traverses from a source node
down through the branches of the tree network to a set of customer
leaf nodes. Each modem monitors the quality of received data using
a series of continuous data metrics. The state of the data, when it
reaches a modem, is contingent upon the path it traverses through
the network and can be affected by, e.g., corroded cable connectors.

We train an encoder to identify irregular inherited events in modem
quality data, such as network faults, and encode them as discrete
data sequences for each modem. Specifically, the encoding scheme
is obtained by using unsupervised contrastive learning, where a
Siamese neural network is trained on a positive (true) topology, its
modem data, and a set of negative (false) topologies. The weights
of the Siamese network are continuously updated based on a new
modified version of the Maximum Parsimony optimality criterion.
This approach essentially integrates an optimization problem di-
rectly into a deep learning loss function.

We evaluate the encoder’s performance on simulated data instances
with randomly added events. The performance of the encoder is
tested both on its ability to extract and encode events, as well as
whether the encoded data sequences lead to accurate topology re-
constructions under the modified version of the Maximum Parsi-
mony optimality criterion.

Promising computational results are reported for trees of a varying
number of internal nodes up to 20, where the encoder identifies a
high percentage of simulated events, leading to nearly perfect topol-
ogy reconstruction. Overall, these results affirm the potential of em-
bedding an optimization problem into a deep learning loss function,
unveiling many interesting topics for further research.

9.1 Introduction

Broadband technology is one of the most widespread technologies for providing
internet access to paying customers. According to CableLabs, that is one of
the leading providers of broadband technology, this technology was the most
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accessible in both Europe and the US in 2016 [18]. The relatively cheap cost of
deployment and continuous innovation suggest that it is going to be an impor-
tant part of digital infrastructure for many years to come.

Hybrid-Fiber Coaxial (HFC) networks are used to connect users to the internet
using coaxial cables in which data is transmitted using radio frequency (RF)
signals. Each HFC network is connected to the optical backbone grid through a
local singular conversion node, called a CMC (Coaxial Media Converter), where
the signal is converted from optical to electronic form as it transitions from the
fiber optic backbone to the coaxial network, and vice versa. Within a given
HFC network each customer is connected to the CMC through a sequence of
cable amplifiers and cable splitters arranged in a tree-like structure allowing
the HFC network to cover a local area by gradual branching. In this network
architecture, the end connections to the homes of the customers are represented
by the leaf nodes of the tree. The internal nodes are the cable splitters, while
the root node is represented by the CMC. Lastly, the edges in the architecture
correspond to cable connections [135].

The RF signal is transmitted using metal-insulated copper wires due to its
vulnerability to outside signal interference that would otherwise impair the con-
nection of the customer. In general, HFC networks are prone to a range of
errors, making maintenance an important part of daily operation. For instance,
general degradation can cause one or more customers to have reduced connec-
tivity [199], and weather conditions have been shown to affect the quality of the
network [195, 129].

Due to digitization, the complexity of the HFC setup, and time constraints, the
infrastructure owner only has partial knowledge of the cabling in most HFC net-
works, hereinafter referred to as the topology. This is problematic since knowing
the topology is crucial for network maintenance staff when localizing and resolv-
ing network faults. Incomplete topology records lead to a significant increase
in both resolution and driving time for the maintenance staff. In their review
paper on network monitoring, Lee et. al emphasizes that a known and fully
updated topology is important for accurate problem detection [97]. Simaković
et. al mentioned that a known topology is needed for monitoring non-intelligent
devices, such as amplifiers [174]. Additionally, both Heiler et. al and Simakovic
et. al listed a full topology mapping as one of the data requirements for their ap-
proach to root-cause identification and localization of network failures [71, 173],
respectively, while Hu et al. planned to utilize the topology for localizing net-
work errors in future work for their HFC anomaly detection algorithm [77].
Due to the scale and the constant changes to HFC networks and digital privacy
legislation, it is not viable to manually reconstruct the missing topology data.
This makes an automated approach to solving the problem valuable to network
owners.
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A recent study shows that it is conceptually possible to infer a missing topology
of e.g. an HFC network with high accuracy using discrete time series data
collected at modem level only [138]. The authors achieve this by employing
a multi-objective approach, incorporating the Maximum Parsimony optimality
criterion [61] and accounting for the geographic distances between components
of the network. The most parsimonious tree topology is the topology that
best explains the observed leaf (customer) data in terms of the fewest data
mutations. This means that since the RF signal is initially transmitted through
a singular root node, one can reconstruct the most probable evolution of the
signal throughout the network branches at each time step and count the number
of signal mutations [61, 69]. This value is often referred to as the parsimony
score of a proposed tree topology. The term originates from computational
biology, particularly within the field of reconstructing family trees, scientifically
known as phylogenetic trees.

The limitation of the above-mentioned study [138] is that its proposed method
only works for discrete time series data. Moreover, the observed data must con-
tain distinguishable data mutations such as faults, hereinafter events, happening
on the branches of the network over time. Nonetheless, modems predominantly
capture continuous time series data, and the process of identifying inherited
events within the data and subsequently encoding them into a discrete format
is not a straightforward task. As a result, the study [138] focused solely on
simulated data.

Inspired by Pisinger & Sørensen [138], consequently, our work focuses on ex-
tracting significant discrete events from continuous time series data, a task
which, in this setting, remains unsolved. While, theoretically, the parsimony
algorithm only necessitates the encoded sequences to be discrete, we consider
strictly binary events in this work for the sake of simplicity.

Because the parsimony score counts the number of mutations needed to explain
the observed leaf data, learning an encoding scheme for the time series using
the parsimony score as a loss function is not feasible. No mutations are needed
to explain identical data, thus, in this setting, the model will simply encode the
same data point for all leaf nodes and arrive at a trivial model, hereinafter zero-
encoder. Instead, our work proposes using the parsimony score to train a binary
event encoder using a contrastive approach [95]. We consider the case where
the encoder is constructed using a 1D convolutional neural network architecture,
which is then treated as a Siamese network [91]. Hereby, the encoding scheme
is similarly applied to all customer modems, meaning that we learn a general
encoder.

As a preliminary investigation, we aim to analyze the feasibility of the pro-
posed approach using simplified simulated data, where all possible topologies
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are known and unique events are simulated on all network edges. We experi-
ment with different data simulation parameters and investigate how the effect of
the contrastive approach depends on the time series properties (e.g. length and
fault duration) along with network characteristics (e.g. the number of nodes in
the network). Moreover, we propose a modified version of the parsimony algo-
rithm to improve the uniqueness of the optimal solution. This modification is
based on a new assumption about the state of the data signal at the root-node
level. We show evidence that strongly suggests that the modified version leads
to better and more unambiguous topology predictions.

The main contributions of this paper are:

• An alternative formulation of the tree topology reconstruction problem
using leaf node data, also known as the problem of inferring phylogenies
in Computational Biology. The new formulation adds the assumption that
one of the discrete data states is a base-level state representing the root
node behavior and indicating an unaffected data point.

• A new algorithm that returns the best possible parsimony score with re-
spect to the maximum parsimony optimality criterion, given the above-
mentioned alternative formulation.

• A new conjecture based on computational experiments, which states that
the true topology, given the new alternative formulation, will always yield
a uniquely best parsimony score, provided that at least one isolated dis-
tinguishable event occurs on every edge in the tree.

• A novel approach leveraging the synergy between the fields of operations
research and deep learning, achieved by integrating an optimization algo-
rithm into a deep learning loss function.

• A contrastive approach for training an encoder that is able to infer events
in continuous time series data that are informative in the new alternative
parsimony setting. The end-to-end approach considers the new parsimony
algorithm, the true topology of the network, and a set of wrong topologies.

• A stochastic version of the parsimony algorithm to be used with automatic
differentiation during the learning stage. This relaxation allows each data
point to be represented as a set of probabilities for the different possible
states, rather than a certain discrete state.

• An approach to simulating customer modem time series data given the
new alternative parsimony setting, to be used in testing of the proposed
contrastive method.
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The paper is organized as follows: In the following two sections, we equip the
reader with the relevant theory behind the HFC network setting and the max-
imum parsimony criterion. Section 9.4 provides an overview of state-of-the-art
research related to our problem. In section 9.5 we formally define our problem
along with the difficulties associated with it, and in section 9.6 we present our
methodology. Section section 9.7 defines the computational experiments we per-
form, the evaluation metrics used to assess the computational results, and the
data simulation scheme for the experiments. The results of the experiments are
presented in section 9.8. Lastly, we discuss the results, the proposed method-
ology, assumptions, applicability, and future work in section 9.9. Section 9.10
concludes the paper.

9.2 The HFC network

The backbone (country-spanning) network consists of a set of Optical Line Ter-
minals (OLTs) between which information is transmitted using optical fiber
technology in which optical wires are used to transmit data using flickering
light [155]. Locally, each OLT is connected to a set of Coaxial Media Convert-
ers (CMCs) in which the signal is converted from a fiber signal to an electronic
RF signal as part of the transition from the backbone network to the coaxial
network, hereinafter last-mile network, and vice versa. These CMCs are used
as local singular nodes to which all customer modems in a local area are con-
nected. This connection enables data transfer from the backbone internet to
the customer modem, i.e. downstream (DS), and the other way, i.e. upstream
(US). Each customer modem is connected to a CMC through a sequence of ca-
ble amplifiers (amplifying the RF signal) and cable splitters linked by coaxial
cables. Usually, the splitters and amplifiers of a last-mile network are sitting
close together in the same street cabinet, making it reasonable to illustrate both
the amplification and splitting of the signal by a singular process (node). An
illustration of a last-mile HFC network is provided in Figure 9.2.1.

9.2.1 Time series data

Due to the many potential challenges faced in the daily operation of the HFC
network, multiple metrics are sampled regularly from each of the modems in the
network. These metrics are specified in the (Data-Over-Cable Service Interface
Specifications (DOCSIS) 3.0 [184] and include Modulation Error Ratio (MER),
power levels, the number of bits received during the last poll period, the number
of corrupted bits, and other metrics that are used to perform surveillance of
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Figure 9.2.1: Illustration of a last-mile HFC network setup. The CMC
acts as a local singular node connecting a local network to the backbone
internet using fiber-optic technology. Each customer modem is connected
to the local CMC through a sequence of amplifiers/splitters (red triangles)
linked by coaxial cables. The splitters and amplifiers are usually found close
to each other in the same street cabinet. Each customer modem collects
a set of performance metrics over time that can be used for monitoring
purposes.
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Figure 9.2.2: Example of 24 hours of time series data from four different
customer modems consisting of minimum MER values during the last 15
minutes. It appears that there is a baseline signal that all modems adhere
to. However, during certain periods, some customers experience signal
distortion due to specific events. For example, between approximately hours
7 and 8, the signal for all customers is prone to increased variation with
varying degrees. Conversely, during hours approximately 10 to 13 and 22
to 24, only the signal for the green and orange customers is affected.

the quality of the signal over time. Typically, these metrics are aggregated
through polling, utilizing statistical methods or summation for each polling
period, since continuous real-time monitoring is often impractical due to the
significant volume of data that would need to be stored. See Figure 9.2.2 for
an example of time series data from four different modems in the same HFC
network. These time series consist of minimum MER values during the last
polling period (approximately 15 minutes) over a total of 24 hours.

9.2.2 Faults and noise propagation

The complexity and vulnerability of especially the coaxial part of the HFC net-
work make it prone to degradation and various types of errors. This means that
many approaches have been proposed to identify and locate errors in the net-
work [71, 77, 94, 159, 173, 194]. A typical error influencing broadband networks
is the so-called Common Path Distortion (CPD) that is caused by connectors
that have been affected by stress or corrosion [164]. In general, problems in the
HFC network are characterized by being sporadic and difficult to detect due to
the many potential root causes. Those include physical properties in the wires,
weather factors like temperature and humidity, outside RF interference, elec-
tromagnetic interference, and improper customer equipment [139, 140]. Some
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types of errors are due to problems in or near the network amplifiers, meaning
that all customer modems that are located topologically beneath a problematic
amplifier will be affected in the DS case [203, 62]. An example of this is visible
in Figure 9.2.2, where all customers seem to adhere to some baseline signal, but
where some or all customers are affected by specific events during periods of
time.

9.3 Maximum parsimony

The study of evolutionary relationships, scientifically known as phylogenetics,
is a heavily researched discipline within biology, dating back to the 1800s when
early evolutionists such as Darwin sketched the first evolutionary trees to rep-
resent historical relationships among living species [66]. The reconstruction of
phylogenetic trees is typically based on genome (DNA/RNA) sequences from
a set of living species, sometimes accompanied by some assumed evolutionary
model. Here, the set of living species represents the terminal nodes of the phy-
logenetic tree, the internal nodes represent extinct ancestors, and the branches
depict evolutionary relationships and relatedness.

Numerous methods exist for reconstructing the tree topology [58], where the
best choice of approach depends on the available data and evolutionary setting.
Maximum parsimony is one of the oldest and most applied methods both praised
and criticized for its simplicity and lack of assumption involving underlying
evolutionary models [176]. The maximum parsimony principle assumes that the
tree which provides the simplest evolutionary explanation is the correct one.
Specifically, it aims to minimize the number of necessary data mutations across
all branches in the tree, enabling the transformation from a shared ancestral
data sequence to each of the observed leaf sequences.

Different variations of evolutionary trees occur in many other problems than
biology, one being the reconstruction of coax networks using DS data. In the
same way that DNA sequences change for each new species over time, the coaxial
signal is distorted based on which physical component it encounters on its way
from the CMC root node to each of the customer terminal nodes. However,
in biology, binary trees are almost exclusively considered and typically in an
unrooted state, as deciding which edge to root the tree in, is a difficult problem
of its own. In telecommunication networks, the root node (CMC) is a fixed
parameter and the networks are general trees.
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9.3.1 The uniqueness of the most parsimonious tree

Although the aim is to reconstruct the one true topology, no reconstruction
method can do so for all imaginable types of data sets. In many cases, the best
tree topology will not be unique and the true tree might not even be amongst
the best solutions provided by some chosen reconstruction model [60]. Jussi &
Teemu [124] employed a large-scale computational study with simulated phy-
logenetic data to estimate the probability that maximum parsimony uncovers
the true tree topology and concluded that it performs well under a simple data-
generating model if the rate of change, i.e. number of events, is sufficiently small
and, crucially, if the length of the data sequences are sufficiently long.

In certain special cases, it has been demonstrated that various reconstruc-
tion principles, including maximum parsimony, consistently reveal the true tree
topology unequivocally. One such example is based on Buneman’s Theorem [16].
Here, in the setting of an unrooted binary tree, if the data in the leaf nodes cor-
responds to exactly one event occurring on each edge at each time step, such
that to the left of the event, one single data state is observed in all nodes, and
to the right another single state is observed, then the tree which generated the
data will be the unique most parsimonious tree. Later, Fischer [60] proved this
to also be true in the case where an event is generated on exactly every two
pairwise edges.

9.3.2 The hardness of maximum parsimony reconstruction

Finding the most parsimonious tree has been shown to be NP-hard in many of its
variants, including the rooted setting [41, 58]. While calculating the parsimony
score of a particular tree is achievable in polynomial time, what makes the
problem difficult is that in theory, one must consider all possible topologies and
their respective parsimony score to determine the most parsimonious tree(s).
Given that the number of possible general tree topologies for n nodes is nn−2,
also known as Cayley’s formula [24], employing a brute force approach quickly
becomes infeasible as the tree size increases.

All approaches to computing the best parsimony score of a specific tree are
based on dynamic programming, which makes the maximum parsimony ap-
proach computationally efficient compared to other tree reconstruction meth-
ods [124]. Fitch [61] famously developed the first algorithm for binary trees,
Hartigan [69] developed a more general approach not limited to binary trees,
and Sankoff’s algorithm [162] addresses the weighted variant of the problem, in
which a cost matrix is given as input, stating the cost of switching between all
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possible pairwise data states.

9.4 State-of-the-art

Even though a known topology is very useful for Internet Service Providers as
previously mentioned, the previous research of trying to reconstruct missing
topologies is very limited. To the best of our knowledge, the only paper that
has been previously published on the matter is from Pisinger & Sørensen in
2024 [138], using the maximum parsimony criterion, as previously discussed in
the introduction. Though the maximum parsimony approach to construct and
study phylogenetic trees goes back many years as described in section 9.3, the
work of Pisinger and Sørensen is believed to be the first time this approach has
been applied to the reconstruction of HFC-network topologies. The work had
very promising results, however, was only evaluated on discrete simulated data,
highlighting the need for a way to extract events from continuous data.

9.4.1 Representation learning in time series

The extraction of discrete events from multiple time series can be understood
as equivalent to learning representations of the time series data. This field has
only recently gained momentum, due to the complexity of the problem and
the incomprehensible nature of time series in general, which makes it hard to
interpret the outcome and assess the usefulness of the learned representations.
Representations are usually learned in an unsupervised manner, in which an
encoder is learned with some unsupervised goal in mind.

Recurrent Neural Networks (RNN) have traditionally been used as an encoder
for a range of time series tasks, such as classification and representation learn-
ing. For instance, Malhotra et. al used RNNs in an encoder-decoder setting
to represent a normal time series behavior and use that to search for anoma-
lies [113], while Malhotra et al. trained a Variational AutoEncoder (VAE) based
on RNNs on a set of different datasets to produce a generic time series feature
extractor [114].

Others have used different approaches to encode the time series. For instance,
Hyvärinen & Morioka [80] divided a time series into a number of chunks with
temporal labels and trained a neural network model that would enable the
temporal classification of the time series chunks using logistic regression. Lei et
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al. used matrix factorization techniques to produce representations that mimic
the distances between time series obtained via dynamic time warping [100].

However, recent work suggests that one-dimensional Convolutional Neural Net-
works (CNN) is the state of the art in various time series tasks, while also being
relatively easy to train and interpret [8]. This has resulted in multiple studies
using CNNs for time series classification [32, 191], but also for representation
learning tasks. Emadeldeen et al. used two types of augmentation based on per-
mutation and scaling, respectively, to learn representations that are contrastive
with respect to both time and context [53]. Challu et. al used hierarchical la-
tent factors to represent time series at different scales in a generative model [27].
Lastly, Franceschi et. al used exponentially dilated convolutions and a triplet
loss to learn representations that are close to those of sub-sequences of an anchor
time series, while far from those of other time series [64].

Nevertheless, all the methods mentioned above, as well as many time series
representation methods in general, are based on continuous representations,
whereas this work requires discrete representations.

9.4.2 Discrete latent representations

A few studies have been conducted where comprehensible discrete representa-
tions were the goal. Van den Oord et. al [188] developed a framework for
learning discrete representations based on a continuous embedding space with
discrete labels, where the embedding nearest to the encoded input would be-
come the discrete latent representation. This approach, however, was not used
on time series. Additionally, the predefined size of the embedding space makes
it inflexible to inputs of various sizes that time series are likely to constitute.

A recent work carried out by Fortuin et al. studied discrete representations of
time series [63] by applying a Self-Organizing Map (SOM) to the latent space
of the encoded values in a VAE setting. This method, however, learns single
representations for an input consisting of a sliding window of a time series, but
for our work, no assumptions can be made on the length of events. Additionally,
this method would not guarantee latent representations that are informative in
a parsimony setting.
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9.5 Problem Statement

We begin this section by formally introducing the problem. Next, we introduce
what the most parsimonious tree is and show how the parsimony score is cal-
culated. Thirdly, we introduce the issue of obtaining a unique solution, and
lastly, we show how the frequency of events in the modem data complicates the
problem further.

9.5.1 Problem

Let graph G = (V = {N,M}, E) be a general tree corresponding to a last-mile
HFC network with a set, N , of internal nodes (cable splitters and amplifiers), a
set, M , of leaf nodes (customers), and a set edges, E (cable connections). Given
the tree property of the graph, we have that |E| = |V | − 1, where in this work,
| • | represents the cardinality of a set.

Every modem m ∈M is associated with input data Xm ∈ R|F |×|T | comprising
F features, each recorded over a duration of T time steps. The features are
various continuous metrics describing the quality of the DS signal received by
each modem at specific time points.

For each modem, an encoded version of the data is generated using an encoder
f(X). The encoded data is represented by a |F ′| × |T ′| matrix1 where each
element is a discrete event in the alphabet of binary states Ω = {0, 1}. Each
state in theory corresponds to a physical interpretation, but interpretations can
be quite abstract. A simple interpretation could be that state 0 may represent
a normal signal, while state 1 may indicate an abnormal signal. All results can
readily be generalized to include a larger set of states. We also establish an
encoded data sequence z ∈ Ω|B| for each modem, arranging the encoded matrix
sequentially in a single dimension, with B = F ′×T ′ (Cartesian product). Here,
z straightforwardly represents all the encoded features in vectorized form. We
denote the stacked collection of all modem sequences in a graph G as Z =
ΩM×B .

Then, the aim of this paper is to develop an encoder, f(X), that, based on
the maximum parsimony principle, can transform continuous modem data, X,
into a collection of binary data sequences Z. This encoder should ensure that
the tree topology, from which the modem data originates, will be the singularly

1Where |F ′| and |T ′| are used to specify the dimensions of the outcome of the encoder,
which can be—but does not have to be—of the same dimensions as the input data Xm.
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most parsimonious tree with respect to all the encoded modem data sequences,
Z.

In this work we assume, without loss of generality, that all leaf connections are
known. Consequently, we only consider the set of tree topologies that emerge
from reconstructing the internal edges of a last-mile network. We make this
assumption based on a first-hand account from the biggest telecommunication
infrastructure owner in Denmark, TDC NET. Moreover, we also assume that ev-
ery internal node has at least one child which is a modem (leaf) node. Although
this assumption does not hold for all real-life last-mile networks, it is necessary
to prevent the emergence of isomorphic topologies resulting from swapping two
interchangeable ’modem-less’ internal nodes. Lastly, we assume data events
occur uniformly distributed across all internal edges and that events propagate
undisturbed down through the network.

9.5.2 The most parsimonious tree

The most parsimonious tree is the tree, G, associated with the lowest parsimony
score P(Z, G) based on a set of discrete data sequences, Z; one sequence z ∈
Ω|B| for each modem. Here, the parsimony score of a tree G is given as the sum
of the pairwise Hamming distances between all nodes connected by an edge in G.
This equates to inferring the data states, zi, of the internal nodes and thereby
minimizing the number of times the root node signal must change through the
sequences of nodes in the tree, at every time point, to explain the observed
modem data:

P(Z, G) =
{

min
∑

(u,v)∈E dH(zu, zv)

s.t. zi ∈ Ω|B| ∀ i ∈ N

}
(9.1)

where (u, v) ∈ E are all edges in G between any two nodes u and v, and dH ,
otherwise known as the Hamming distance between two vectors, is defined as:

dH (z, z∗) =

B∑
b=1

1H(zb, z
∗
b ) where 1H(zb, z

∗
b ) =

{
0 if zb = z∗b
1 otherwise

(9.2)

In short, the parsimony score is the sum of all differences in data between any
two nodes connected by an edge in G.

The observant reader might notice that P(Z, G) is not readily computable, since
the data sequences z are known only for the modem nodes u, v ∈ M . Luckily,
polynomial time algorithms exist for determining which sequence(s) z for each
internal node u, v ∈ N leads to the minimal parsimony score. These algorithms
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were briefly discussed in section 9.3. Since we in this work are considering
general trees with binary data states, Hartigan’s algorithm [69] is the most
appropriate choice.

Hartigan’s algorithm is a dynamic programming approach where each internal
node is systematically considered in a bottom-to-top order, determined by a
postorder traversal of G. Furthermore, all parsimony algorithms compute the
score for each time point in Z independently before aggregating the score con-
tributions.

For every internal node v ∈ V , the algorithm exclusively assesses the set of
direct descendant nodes Dv. Here, the optimal state of node v is determined
by the majority state observed in its descendant set, where multiple states can
be optimal in the case of a tie. The cost associated with node v reflects the
number of descendants assigned a different state than v, each signifying that a
data mutation occurs. In other words, the cost corresponds to the number of
descendant nodes conflicting with the majority vote.

The parsimony score for the entire tree with respect to a single data point is then
obtained by summing the costs of all internal nodes v ∈ V . Alternatively, as
this process simultaneously determines the optimal data state(s) of all internal
nodes, equation (9.1) presents a different, but equivalent approach, to computing
the optimal parsimony score.

Algorithm 9.1 formally outlines the above procedure for a single data point.

9.5.2.1 Example: calculating the optimal parsimony score

Figure 9.5.1 presents a small illustrative example of running the algorithm on a
small tree for the first data point in each zm,m ∈ M . The example tree G in
Figure 9.5.1 contains 15 customer nodes (blue), seven amplifier/splitter nodes
(red), and one root node, the CMC (green). The example considers a single
binary input data point for each modem, displayed next to each blue node.
Following the procedure of Algorithm 9.1, the internal nodes are considered one
by one with respect to a postorder traversal; C, D, A, E, F, G, B, R.

The optimal parsimony score for the example tree is five. This score can be
obtained in two ways; a) by letting the state in all {0, 1}-nodes be 0 resulting
in a mutation on all red edges, and b) by letting the state in all {0, 1}-nodes be
1 resulting in a mutation on all green edges.



156 Paper C

Figure 9.5.1: An example of how to compute the optimal parsimony score
for a specific tree G using algorithm 9.1. Here, a single time point in the in-
put data sequences Z is considered. The blue nodes are customers, the red
nodes are splitters/amplifiers, and the green node is the CMC. The com-
puted optimal state sets for the internal nodes are listed in curly brackets.
Node C has two children with differing states, resulting in a tie for the
majority state. Consequently, the optimal state for C can be either state
0 or 1, denoted by {0, 1} on the figure. Moreover, the cost of node C is
costC = 1, as one child node will always disagree with C, regardless of
whether state 0 or 1 is the true state of C. Node D has three children in
which the majority state unanimously is state 1. Thus, the optimal state
set for node D is 1 and costD = 0. Node A has three children, nodes C and
D, and one modem child. Out of these three children, state 0 occurs twice
(in node C and the modem node), and state 1 also appears twice (in node
D and the modem node). Thus, there is a tie for the majority, and the
optimal state set of node A becomes {0, 1}. Regardless of the true state in
node A, one child will always disagree, leading to costA = 1.
The majority state in the children of node E is state 1, but one child dis-
agrees with this state, so the optimal state of E is 1 with costE = 1. The
children of both nodes F and G unanimously agree on the majority state
just as in node D. Node B has four children in which both states 0 and 1
appear twice. Consequently, the optimal state set of node B is {0, 1} with
a cost of 2, as two children will always disagree with the state of B. Lastly,
the root node R has two children both with an optimal state set of {0, 1},
meaning the optimal state set of the root is also {0, 1} with costR = 0.
Continued on the next page
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Figure 9.5.1 (continued): Summing over all node costs gives an optimal
parsimony score for tree G of Σv∈Ncostv = 5. However, this does not
mean that G is the most parsimonious tree for the given modem data. By
considering the simplified version of the problem where the topology of only
the internal edges is unknown, there are still |N ||N |−2 = 262, 144 possible
topology configurations that each potentially could have a better parsimony
score.
There exist two reconstructions of the data states in the internal nodes,
which both yield a parsimony score of five. Letting the optimal state be
0 in all nodes with an optimal state set of {0, 1}, leads to the five data
mutations illustrated by the red edges. Oppositely, letting the optimal
state be 1 in all nodes with an optimal state set of {0, 1}, leads to the five
data mutations illustrated by the green edges.

Algorithm 9.1 Parsimony Score for tree G with modem data, z, for a single
time point

1: procedure parsimony(G = (V = {M,N}, E) , z ∈ Ω|M |)
2: z ←

[
z, null|N |] ▷ Expand z with place-

holder for internal nodes
3: N̄ ← postOrderTraversal(G[N ]) ▷ “Bottom-up” sorting of

internal nodes
4: for v ∈ N̄ do
5: Dv ← set of child nodes of v
6: for ω ∈ Ω do ▷ For each character in the

set of states, Ω
7: ϕω ← frequency of ω ∈ z(Dv)
8: end for
9: zv ← argmaxω∈Ω (ϕω) ▷ Character state(s) of

v becomes the most
frequent

10: costv ← |Dv| −maxω∈Ω (ϕω) ▷ Number of children dis-
agreeing with majority

11: end for
12: return

∑
v∈N costv

13: end procedure
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9.5.3 Solution uniqueness

In the Maximum parsimony section, we briefly discussed that for unrooted trees,
there exist special cases of data generation where the most parsimonious tree
is guaranteed to be unique. However, in this section, we demonstrate a coun-
terexample, proving this is not the case for rooted trees.

In the unrooted setting, one such special case occurs when exactly one event
occurs on every edge at independent points in Z, as discovered by Buneman [16].
Figure 9.5.2 (left) illustrates this case for a rooted tree Gp with five internal
nodes and modem data sequences of length |B| = |E| = 4. At each time point
t ∈ B, a new edge e is chosen, and z[t] is assigned state 1 for all modems below
edge e. In the figure, the color of the affected data point corresponds to the color
of the edge on which the event was simulated. The resulting modem data, Z,
generated by this approach is depicted in Figure 9.5.2. The optimal parsimony
score of tree Gp equals the number of simulated events, namely four. However,
as shown on the right in Figure 9.5.2, an alternative tree topology Gn also yields
an optimal parsimony score of four for the same input data Z, if the root node
data is reconstructed as [0, 1, 0, 0].

Although it is unlikely that an encoder can learn to encode a special case of
data that generates a unique most parsimonious tree, it remains problematic
that it is not even theoretically possible to do so. While it is improbable for
an encoder to learn to recognize and encode a special structure in the data and
always produce a unique most parsimonious tree, the inability to achieve this
even theoretically is a concern. Therefore, we will introduce a new assumption
and propose a new modified parsimony approach in the Methodology section to
attempt to circumvent this issue.

Lastly, we also find it important to emphasize that it directly follows from the
definition of the parsimony score that some form of inheritable event must occur
on every edge in a tree G, at least once in the modem input data Z. If an edge
e = (u, v) is never affected by an event, the data signal passing through nodes
u and v will be identical. Consequently, replacing edge e with e′ = (v, u)—
that is, switching the order of nodes u and v—will result in a new topology,
G′, indistinguishable from G. Assuming faults occur at random positions in a
network, collecting data over a sufficiently long time period should ensure all
edges are affected at least once.
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Figure 9.5.2: A counterexample showing that a special data case which
results in a unique most parsimonious tree in an unrooted setting [16], does
not yield a unique tree in a rooted setting. Here, the left tree is the true
tree, Gp, for which an event has been simulated to occur on each internal
edge at independent times. Given that there are four internal edges in
Gp, the parsimony score of Gp is also four. However, the alternative tree
topology to the right, Gn, yields the same optimal parsimony score of four
for the same modem data, proving the true tree is not uniquely the most
parsimonious.

9.5.4 Events

If |Ω| different data states are observed at the same time point in Z, it will
require at least |Ω| − 1 data mutations (events) to explain the data. As an
example, in the case of binary data, if both states 0 and 1 are observed in
different modems at the same time, then the original state of the signal in the
root node must have mutated at least once to explain the two states observed
at leaf level. This means that if only singular independent events occur at
each data point in Z, then there does not exist any topology Gn with a better
parsimony score than the true topology Gp.

However, if multiple identical events, hereinafter multi-faults, occur at the same
time, an alternative tree topology Gn can sometimes outperform the true topol-
ogy Gp, that generated the modem data. Such an example is illustrated in
Figure 9.5.3. Here, at time t = 4, the last point in Z, an event occurs on two
different edges, where in both cases the modem data is affected in the same
way, i.e. it mutates from state 0 to state 1. As a result, the alternative topology
Gn to the right in Figure 9.5.3 is able to group the modems affected by the
two simultaneously occurring events under one single edge, (B,D), such that a
single event can explain the observed data mutations instead of the two events
that occurred in reality.
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A set of states more fine-grained than binary, could, in theory, resolve the issue
of multi-faults. However, in practice, an encoder would then need to learn not
only to identify abnormalities in the modem data but to also categorize or at
least tell apart different abnormalities. This task is much more challenging and
could easily lead to overfitting.

If in fact, two identical events occur at the same time, i.e. two cables buried next
to one another, are both cut through, then the maximum parsimony principle
fails. Assuming events are not that frequent, it is much more likely that one
single event causes a signal mutation in a set of modems rather than two or
more identical events occurring at the exact same time. The optimal tree with
respect to the maximum parsimony principle, is the tree that can explain the
observed leaf data with the least amount of mutations, as formalized in (9.1).
Therefore, although the left tree in Figure 9.5.3 is the true tree that generated
the data Z, according to the maximum parsimony principle, it is more likely
that the data originates from the right tree.

Since we in this paper have chosen to work with the maximum parsimony prin-
ciple, there is not much we can do to combat multi-faults in our methodology.
Instead, we have chosen to show the impact on topology accuracy (9.9) (defined
in a later section) for an increasing amount of multi-faults in the modem data.

9.6 Methodology

In this section, we present our proposed methodology. First, we introduce a
new root-node assumption and a modified parsimony algorithm, based on which
we also propose a new conjecture. Secondly, we prove that the new modified
parsimony algorithm yields the optimal parsimony score given the new root-
node assumption. Thirdly, we introduce a contrastive learning approach along
with a loss function that is based on the new modified parsimony algorithm; we
also introduce a solution to overcoming non-differentiability during the learning
phase. Lastly, we introduce a set of neighborhood functions to be used when
sampling topologies from the set of all possible topology reconstructions for a
given tree size.

9.6.1 Modified Parsimony Algorithm

To circumvent the inability to obtain unique solutions, we propose a new as-
sumption, i.e. that the data states in the root node, zroot, are known just like
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Figure 9.5.3: An illustrative example of the challenge posed by multi-
faults in a maximum parsimony framework. The network on the left dis-
plays the true topology, Gp. On each edge, t indicates when an event
occurred on the edge, resulting in a change from the base data state of 0 to
1 in the data sequence of all affected modems. At time t = 4, a multi-fault
occurs on edge (B,C) and (B,D). The optimal parsimony score of Gp is
five: one in each time step with a single fault, and two in the time step
with a multi-fault.
In the alternative network topology to the right, Gn, the same modem data
yields an optimal parsimony score of four, which is better than the score
obtained by the true topology. This is because Gn groups all modems af-
fected by the multi-fault under a single edge, (B,D).
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the leaf nodes. At all time points, the root node represents some normal base-
line signal. Even if the signal received by the root node from the backbone grid
at some point t is corrupted, any additional faults in the last-mile network will
accumulate on top of this initial corruption acting as the baseline signal at time
t.

We propose a new modified parsimony algorithm (algorithm 9.2) identical to
the normal parsimony algorithm (algorithm 9.1), except for lines 9–10. Here,
when v becomes the root node in the for-loop in line 4, instead of letting the
majority state in the children of the root dictate the optimal state of the root,
we let the cost of the root be equal to the number of children disagreeing with
the presumed input state of the root. This can be formally stated as:

P̂(Z, G) =
{

min Psub(Z, G) +
∑

v∈Droot
dH(zroot, zv)

s.t. zi ∈ Ω|B| ∀ i ∈ N/{root}

}
(9.3)

where Psub(Z, G) is the sum of the parsimony scores of all subtrees, Ĝ(v), rooted
in the set of nodes v ∈ Droot which are the direct descendants of the root node.
Moreover, Ẑ ⊆ Z is the set of discrete data sequences belonging to each modem
in subtree Ĝ(v):

Psub(Z, G) =
∑

v∈Droot

P(Ẑ, Ĝ(v)) (9.4)

Here, the objective of (9.3) minimizes both the aforementioned sum of subtrees
as well as the Hamming distance between the root node to each of its direct de-
scendants. A proof demonstrating that Algorithm 9.2 always yields the optimal
parsimony score is enclosed in the supplementary material 9.A.

In Figure 9.5.2, the base state of the root was assumed to be zero at all points,
and for every simulated event, we let the data mutate from zero to one. Using
the modified algorithm 9.2 on this example, assuming zroot = [0, 0, 0, 0], yields
a unique most parsimonious score for the true tree to the left in the figure.

9.6.1.1 Uniqueness conjecture

Based on algorithm 9.2, and inspired by the data setting of Buneman [16], we
propose the following conjecture:

Conjecture 1 Given Condition 1 (below), the Modified Parsimony Score algo-
rithm presented in Algorithm 9.2 always yields a unique best parsimony score
for the true tree topology.
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Figure 9.6.1: Illustration to aid understanding of new modified parsimony
score and proof of Algorithm 9.2

Algorithm 9.2 Modified Parsimony Score for tree G with modem data z for a
single time point

1: procedure mParsimony(G = (V = {M,N}, E) , z ∈ Ω|M |, ωroot ∈ Ω)
2: z ←

[
z, null|N |] ▷ Expand z with place-

holder for internal nodes
3: N̄ ← postOrderTraversal(G[N ]) ▷ “Bottom-up” sorting of

internal nodes
4: for v ∈ N̄ do
5: Dv ← set of child nodes of v
6: for ω ∈ Ω do ▷ For each character in the

set of states, Ω
7: ϕω ← frequency of ω ∈ z(Dv)
8: end for
9: if v is root then

10: costv ← |Dv| − ϕω=ωroot

11: else
12: zv ← argmaxω∈Ω (ϕω) ▷ Character state(s) of

v becomes the most
frequent

13: costv ← |Dv| −maxω∈Ω (ϕω) ▷ Number of children dis-
agreeing with majority

14: end if
15: end for
16: return

∑
v∈N costv

17: end procedure
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Condition 1 A tree topology G = (V = {M,N}, E) with leaf nodes, M ; nodes,
M ∪N ; and edges, E, where the root node and each leaf node contains a discrete
data string, z from an alphabet of discrete states, Ω. Every data point in every
leaf data string must be inherited from the root through the branch connecting
them. If a data point encounters an ’event’ through its branch traversal it is
modified to a new discrete state s ∈ Ω, different from the root state. At least one
event must occur on each edge of the tree at an independent point in the data
string, and no more than one event can occur at the same time. Consequently,
the length of each data string, z, must be at least |E|.

The validity of the conjecture will be challenged through rigorous simulated
tests described in section 9.7.

9.6.2 Contrastive Learning Approach

Since our approach intends to encode the continuous time series data from the
customer modems in the network into a sequence of discrete events, there is
no definitive ground truth labeling for the output events. This means that the
problem will be unsupervised. In the meantime we intend to learn an encoder,
f , to be used on any customer modem individually, thus will only depend on
the continuous time series data. We will use a contrastive approach, compar-
ing a positive (true) sample to a set of negative (false) samples, based on the
parsimony score (see section 9.6.1) to learn an encoder that can extract the
most useful events from the time series data in the parsimony setting. This
means that we intend the model to encode events with two properties. Firstly,
the encoded events should result in the lowest parsimony score when calculated
using the true topology (positive sample) as opposed to any other possible topol-
ogy (negative sample). Secondly, to be able to differentiate between any two
topologies, their respective parsimony scores calculated based on the encoded
events, should be as different as possible. This could be achieved by minimizing
the total parsimony score using the true topology while maximizing a pairwise
distance measure between the parsimony scores of any two different topologies.
Our contrastive approach is visualized in Figure 9.6.2.

In the following, we describe our approach in the case where the alphabet, Ω,
consists of binary events. We choose this for simplicity, not at a loss of generality,
as it is straightforward to add an extra dimension for multiple encoded event
states. Additionally, the parsimony score is defined for discrete events, not
exclusively binary events.
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Figure 9.6.2: Illustration of the proposed algorithm. A Siamese network
is trained using the parsimony score on a positive (true topology) sample
(green) and a set of negative samples (red). The time series from each of the
M customers are sent through the same encoder f that encodes continuous
time series into an M × B matrix of binary events. Using this matrix and
each of the different topologies, the parsimony scores can be computed.
Based on these the loss is calculated and used to update the encoder.

9.6.2.1 Proposed Loss Function

Let Xm be the |F | × |T | matrix of time series measurements from the mth
modem, that is |F | features measured on |T | occasions. Let f be a Siamese
neural network that encodes the multiple time series from each customer modem
in an HFC network into a matrix (sequence) of events of size |B| = |F ′| ×
|T ′|. Because the parsimony algorithm treats each data point individually, each
of these matrices, f(Xm), can be flattened and stacked to produce the final
encoded event matrix of all modems in the network, Z ′, of size |M | × |B|. This
matrix is given by:

Z′ =


f(X1)1 f(X1)2 . . . f(X1)|F ′|
f(X2)1 f(X2)2 . . . f(X2)|F ′|

...
f(X|M |)1 f(X|M |)2 . . . f(X|M |)|F ′|

 ; f(Xm)⊤j =


f(Xm)j,1
f(Xm)j,2

...
f(Xm)j,|T ′|


(9.5)

where f(Xm)j is the jth feature in the encoded events matrix measured for
modem m. To make the encoded events binary, f should be chosen such that
the output values are in the range [0, 1] allowing for subsequent rounding to a
binary value:

Z = ⌊Z′⌉ (9.6)
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Let P̂(Z, G) be the modified parsimony score (9.3), and P̂(Z, G) the unsummed
vector of modified parsimony scores with respect to each time point (column)
in the encoded binary events matrix Z using the tree described by G = (V =
{M,N}, E). We propose the loss function given by:

L(Z, Gp,Gn) = P̂(Z, G
p)

|E|
2 · |B|

+

α

√√√√ 1

K(K + 1)

∑
g1∈G

∑
g2∈G\g1

1

∥P̂(Z, g1)− P̂(Z, g2)∥22 + 1

(9.7)

whereN is the set of internal nodes, Gp is the true topology, Gn = {Gn
1 , . . . , G

n
K}

is the set of K negative (sampled) topologies, and G = {Gp} ∪ Gn. The first
term corresponds to the parsimony score of the true topology and is normalized
by the maximum number of data mutations that can occur with respect to the
parsimony principle2. Meanwhile, it is also natural to normalize the contrastive
term by the number of comparisons performed, i.e. the number of contributions
in the nested sums; 1

2 · K · (K + 1), and the number of contributions in the
sum of squares, |B|. Doing this also makes the coefficient α independent of the
number of negative samples used in the training loop.

This loss function considers the difference between resulting parsimony scores
using all pairwise topology samples, rewarding large score differences and pun-
ishing small ones. We calculate these distances in the |B|-dimensional space(
N|B|) allowing for more flexibility in the encoded events.

9.6.2.2 Overcoming the Non-Differentiability

The modified parsimony algorithm described in section 9.6.1 is so far constrained
to discrete time series events. Since we use the modified parsimony algorithm
directly in our loss function given in (9.7), the rounding operation will be part
of the standard forward pass. In order for the back-propagation algorithm to
work, gradients need to be computed with respect to all weights in the network
individually [157]—also when utilizing automatic differentiation in e.g. pytorch
[134]. Due to its nature, the rounding operation is not differentiable because it
is not continuous in its domain.

2In the case of binary data states, |Ω| = 2, the maximum number of mutations that can
occur is 1

2
|E|. For every internal node in a tree, a mutation occurs for each child node

disagreeing with the majority state. The majority will always include at least half of the
children, thus a mutation can at most occur on half of all edges. It follows from the same
argumentation that if |Ω| = 3, the maximum number of mutations is 2

3
|E|, for |Ω| = 4 it is

3
4
|E|, etc.
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We overcome this challenge by defining a special forward pass for training in
which we let the encoded events take values in [0, 1], thereby representing prob-
abilities. To train the model, we additionally propose a slightly modified version
of the parsimony score that allows for continuous events, meaning that the dis-
tances in (9.7) will be calculated in R|B|

+ . Since all operations will be carried out
in the continuous space, this version will allow for the calculation of gradients
throughout the full model.

9.6.2.3 Modified Continuous Parsimony Score

The intuition behind the continuous version of the modified parsimony score is
to keep track of each event state individually and for each leaf node to encode the
probability of the customer modem being in any given event state. We do this
by ensuring that the sum of all possible state probabilities sums to one for each
customer modem, adhering to the rules of probability theory. The parsimony
cost of an internal node will no longer be the number of children disagreeing
with the majority, but rather the sum of disbelief (among all the children) in the
most probable event state as believed by the children. This means that if every
child believes fully in a single (but not necessarily the same) state, the cost will
be equivalent to that of the discrete case. Additionally, internal nodes inherit
the averaged probabilities for each state from their children, meaning that the
degree of belief in an event state will also be inherited and thereby not lost as in
the discrete case. The pseudocode for the modified continuous parsimony score
is given in Algorithm 9.3. An example of the calculation of the parsimony score
for a tree using this probability-based algorithm is shown in Figure 9.6.3.

9.6.3 Neighborhood functions

To generate a set of negative samples Gn, we will need a set of neighborhood
functions that can permute some tree G into a negative sample Gn

1 through a
series of neighborhood moves. Figure 9.6.4 illustrates the three types of neigh-
borhood functions used throughout this paper. These neighborhood functions
were originally introduced in [138].

Random swap inserts a new random edge (v, u) and removes the old parent
edge of node u, i.e., edge (w, u) . Subtree shuffle selects a random sub-tree Ĝ(v)
with k nodes rooted in node v, and shuffles all the edges in Ĝ(v) at random.
Parent-child swap swaps the relationship between two node u and v, where v is
the parent of u, such that u becomes the parent of v instead.
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Algorithm 9.3 Continuous Modified Parsimony Score for tree G with modem
data z for a single time point

1: procedure cmParsimony(G = (V = {M,N}, E) , Z∗ ∈ {z ∈
[0, 1]|Ω|

∣∣ ∥z∥1 = 1}|M |, ωroot ∈ Ω)
2: Z∗ ←

[
Z∗, null|Ω|×|N |] ▷ Expand z with placeholder for internal

nodes
3: N̄ ← postOrderTraversal(G[N ]) ▷ “Bottom-up” sorting of internal

nodes
4: for v ∈ N̄ do
5: Dv ← set of child nodes of v
6: for ω ∈ Ω do ▷ For each character in the set of states, Ω
7: ϕω ←

∑
z∗
ω(Dv) ▷ Sum of probabilities of character ω among

children
8: zω,v ← ϕω

|Dv| ▷ Probability of character ω in v is average of
children’s

9: end for
10: if v is root then
11: costv ← |Dv| − ϕω=ωroot

12: else
13: costv ← |Dv| −maxω∈Ω (ϕω) ▷ Sum of children’s disbelief in

most probable ω ∈ Ω
14: end if
15: end for
16: return

∑
v∈N costv

17: end procedure
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Figure 9.6.3: An example of how to compute the optimal parsimony score
for a specific tree G using algorithm 9.3. Here, a single time point in the
input data sequences Z ′ is considered. This data consists of probabilities
of each of the two states in the alphabet for each customer (blue nodes).
The red nodes are splitters/amplifiers, and the green node is the CMC.
The computed probabilities of each state for the internal nodes are listed
in curly brackets. The optimal parsimony score for the example tree is 6.4.
The cost in each node corresponds to the sum of the probabilities for the
least probable state as believed by the children. For instance, in node C, the
most probable state is 0, hence the cost becomes the sum of probabilities
of state 1 as observed in the children; 0.6 + 0.3 = 0.9.

Figure 9.6.4: Examples of the three neighborhood functions used to gen-
erate negative samples, Gn

A, Gn
B , and Gn

C , of a topology G. (A) Random
swap. (B) Subtree shuffle. (C) Parent-child swap. The green edges are new
edges introduced by each neighborhood function, the red edges are edges
removed by each neighborhood function. Figure taken from [138].
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9.7 Experiments

In order to accurately assess the performance of our methodology, we have
chosen to conduct the following set of experiments, designed to show:

• The legitimacy of our proposed modified version of the parsimony algo-
rithm, i.e. Conjecture 1 (see section 9.7.3 and section 9.8.1 for experiment
details and results, respectively).

• The performance of our approach for small trees, where it is feasible to
consider all possible tree topologies during both training and validation.
Including the impact of event sparsity/density in the data and the influ-
ence of multi-faults, as well as the performance under what is found to be
the ideal data conditions (section 9.7.4 and section 9.8.2).

• The performance of our approach on bigger trees where only a subset of
topologies can be considered for computational reasons, as well as the
effect of different sampling strategies for generating the considered subset
of topologies (section 9.7.5 and section 9.8.3).

• The performance of a single generalized encoder’s ability to encode data
for a wide range of tree sizes (section 9.7.6 and section 9.8.4).

Because this work intends to assess the feasibility of our contrastive approach,
we will keep both the simulated data and the encoder model simple. For all
experiments, we simulate independent training and testing sets each containing
a set of instances, where an instance constitutes one true tree topology, a number
of customer modems, and modem time series simulated based on the true tree.

We train our model on the training sets and assess the performance on the test
sets. Inspired by Franceschi et. al in [64], but originally proposed by van den
Oord et. al in [187], our encoder model will use a sequence of one-dimensional
convolutional layers with exponentially increasing dilation to handle the time
series. Since the topology reconstruction problem is not imminent, our model
is not chosen to be causal - oppositely to the work of van den Oord et. al. and
Franceschi et al. This means that our model includes data in time both prior
and posterior to the prediction point under consideration. After a sequence-to-
sequence encoding of the input time series, our model applies an identical fully
connected layer to every time point to summarize the output of the convolutional
channels into a single vector of output values for each time point. These outputs
will act as an event’s encoded probabilities after being sent through a sigmoid
activation function. Recall that the parsimony algorithm treats every time point
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Figure 9.7.1: Illustration of the architecture used in the experiments.
The use of dilated convolutions is inspired by Franceschi et. al in [64] and
van den Oord et. al in [187], but differs in that a fully connected layer is
applied to the output at every time point, retaining the time component in
the output. H is the number of convolutional layers (hence also the coarsest
dilation) in the architecture.

independently; hence multiple event vectors can be concatenated to form the
input for the parsimony algorithm. An illustration of the architecture is shown
in Figure 9.7.1. In the experiments conducted in this study, we opt for a value of
3 forH, a kernel size of 5 for each convolution, 16 channels for each convolutional
layer, and eight neurons for the final fully connected layer.

It should also be mentioned that, in the case of binary events, there are two
close-to-identical local minima in the encoder parameter space: the one that
correctly identifies the presence or absence of events (encoded to be 1s and 0s
in the output, respectively), and the one where the two are interchanged. This
is not a problem in the traditional parsimony formulation, however, using our
alternative formulation of the parsimony score given in (9.3), an interpretation
of the output of the encoder is introduced. Since the root-level base signal is
assumed to be all 0s, this slightly affects the value of the parsimony score. We
get around this by simply checking after training (but still using the training
data) which of the two cases provides the lowest modified parsimony score and
thereby choose whether or not to flip all outputs of the encoder in the validation
stage.
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9.7.1 Data simulation

Since the goal of this paper is to assess the ability of the proposed methodology
to find inherited events in time series data, we will do the assessment in a
controlled fully simulated setting. Thus, we simulate both the considered tree
topologies as well as the continuous time series data. For each observation, we
first simulate a true network topology with a predetermined number of internal
nodes, N . We sample a number of child modems uniformly in the range from
5 · (|N | − 1) to 9 · (|N | − 1), both values included, and divide them among the
internal nodes, except for the root, making sure that none of these nodes has
less than two modems connected to it.

For small trees with less than seven internal nodes, we sample the true topology
uniformly from the set of all possible topologies given a tree of that size. For
bigger trees, we sample the true topology using a random sampling scheme
discussed in the following section.

Lastly, we select the set of negative topologies. For small trees, this is the set of
all possible topologies, while for bigger trees, the negative set of topologies will
be sampled using one of the schemes discussed in the following.

9.7.1.1 Topology sampling

We define two different sampling schemes, Smart and Random, for topologies
of a given number of internal nodes, |N |. The random sampling scheme is
used for sampling both true topologies and topologies in the negative topology
set, whereas, smart sampling is only used for sampling topologies in the set of
negative topologies.

Random sampling We begin with the set of internal nodes, N , but without
any edges connections between them (each of the customer leaf nodes in M has
a preexisting parent in N , as described in section 9.5). One node in N is initially
marked as the root. We then alternate between two ways of adding an edge,
(u, v), to the graph until all internal nodes, excluding the root, have a parent,
and consequently also a path to the root. In both approaches, we first sample a
node v ∈ N \ root, that does not yet have a parent when considering the edges
in E. The parent node, u, of v is sampled in one of two different ways:

• Sample u from the set of nodes in N for which the addition of the edge
(u, v) would not create a cycle in G.
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• Sample u from the set of descendants of the root node or the root node
itself, i.e. nodes in N that already have a path to the root node, when
considering the edges in E.

Smart sampling A set of smart samples is generated based on a true topol-
ogy, Gp, each through a series of neighborhood moves as described in sec-
tion 9.6.3. For each move, one of the three neighborhood functions is selected
with a 45%, 10%, and, 45% probability, respectively. Each smart sample con-
sists of k ∈ [1, 3N ] neighborhood moves chosen with exponentially increasing
distance between the number of moves, however, sampled with uniform probabil-
ities. Topologies sampled more than once are discarded, resulting in a naturally
skewed distribution of the number of moves3.

9.7.1.2 Time series simulation

For the time series data, we simulate perfectly distinguishable events by split-
ting the sequence of time points into several chunks of a predetermined size,
τ , each with a start time, ti, and an end time, ti+τ . For each chunk, we first
simulate the presence or absence of an event in the network by sampling from a
Bernoulli distribution with a 50% event occurrence probability. In other words,
we determine the set of affected time points, T ∗. If an event occurs in a given
time chunk, we then sample a random edge uniformly from the set of internal
edges in the network and from this edge determine the set of modems, M∗

t ,
affected by the event. Inspired by De Ryck et. al [42], Chang et. al [29], Kawa-
hara & Sugiyama [84], Liu et al.[104], and originally proposed by Yamanishi &
Takeuchi [197], we use the AR(2) process [112] as a base signal for our simulated
time series data for a modem, m:

zm,t = 0.6zm,t−1 − 0.5zm,t−2 + ϵm,t, where ϵt ∼ N (µm,t, 0.5
2) (9.8)

We choose µm,t = 3 if modem m ∈ M∗
t , i.e. is affected by a fault at time t.

Otherwise, we set µm,t = 0; i.e. if modem m /∈ M∗
t , which means that it is

not affected by a fault at time t. An example of the simulated data is shown in
Figure 9.7.2.

3The probability of permuting to the same sample multiple times decreases as the number
of moves increases.
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Figure 9.7.2: An example of part of a data instance with a tree of size
N = 4 shown on the right (only three out of 29 modems are shown). A
snapshot of the time series data is shown for two of the modems in which
two faults occur on two different edges. These faults cause the time series
for the modems to be affected in two different ways, as dictated by the tree
topology. The base level signal has a mean of roughly zero.

9.7.2 Evaluation metrics

To properly assess and compare the performance of our methodology in different
settings, we define two accuracy metrics to be used across all of our experiments.
One metric relates to our ultimate goal of accurately inferring the true topology
of a network, and the other to the end goal of training an encoder that properly
learns to identify the true underlying simulated events.

9.7.2.1 Topology Accuracy

We define the topology accuracy of an encoder to be the ratio of observations
for which the true topology (i.e. the topology used to generate the modem time
series) leads to the lowest parsimony score out of all topologies in a test set
G = {Gp} ∪ Gn. This means that for a set of observations, s = 1 . . . S, where
each observation consists of a discrete-valued matrix, Zs, and a set of topologies,
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Gs, whereof one is the true topology, Gp
s , the topology accuracy is given by:

topology accuracy =

∑S
s=1 1 (Zs, G

p
s ,Gns )

S
where

1(Z, Gp,Gn) =

{
1 if P̂(Z, Gp) < P̂(Z, g), ∀g ∈ Gn

0 otherwise
(9.9)

If G contains all possible topologies for a given tree size we call it the true topol-
ogy accuracy. This metric, however, quickly becomes cumbersome to calculate
as the size of a tree grows, since the number of possible topologies increases
exponentially with respect to the tree size as given by Cayley’s formula [24].
For this reason, we also define the estimated topology accuracy, to be the ratio
of observations for which the true topology leads to the lowest parsimony score
considering Gn to be some (sampled) subset of all possible topologies for a given
tree size.

9.7.2.2 Event Accuracy

We define the event accuracy of an encoder as the mean accuracy of the encoder
over a set of observations. This refers to the mean ratio of time points for which
the encoder correctly identifies the presence or absence of an event, relative to
the true underlying data simulation. This means that for a set of observations,
s = 1, . . . , S, where each observation consists of a discrete-valued matrix, Zs,
of encoded events and a matrix, Z∗

s , of true underlying simulated events, the
event accuracy is given by:

event accuracy =

∑S
s=1

∑|M |
m=1 dH

(
zsm , z

∗
sm

)
S · |M |

(9.10)

where M is the set of distinct modems and dH is the Hamming distance given
in (9.2) between two vectors, in this case, the row vectors of Zs and Z∗

s , both
of length |B|. This metric can also be used on a single observation (i.e. a single
network) to assess how well the encoder extracts the true underlying discrete
events from the continuous time series data.

9.7.3 Uniqueness conjecture experiments

The validity of Conjecture 1 is challenged through a series of rigorous experi-
ments designed to find a counterexample to the claim. The experiments consti-
tute of two parts;
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1. Full testing for trees with three to six internal nodes.
It is computationally viable to compute and compare all possible topolo-
gies and thus prove that Conjecture 1 holds true up to and including trees
of size six.

2. Partial sampled testing for selected trees with more than six internal
nodes.
A subset of all possible topologies for trees of size seven to ten as well as
fifteen, will be tested against a sampled sub-set of topologies.

We use a tree size of |N | = 3 as an example to elaborate on part 1 of the
experiment. There exist three unique topologies for a tree of size three. One
of these topologies is picked to represent the true topology Gp, and based on
Gp the modem data is simulated. As described in Condition 1, we simulate the
occurrence of exactly one independent event per edge per time point, i.e. a total
of |E|. Since Gp in the case of |N | = 3 contains two internal edges, the modem
data strings also contain two data points. Considering a binary alphabet of
discrete states, the root data string is chosen as a string of zero bits, without
loss of generality. Then, we let each data point correspond to an event occurring
on each of the two edges and flip the bit for the modems affected by each event.

Using the Modified Parsimony Score, as computed by Algorithm 9.2, the par-
simony score is calculated for each of the possible topologies using the same
simulated data. For Conjecture 1 to hold true, Gp must yield a unique best
score out of the three possible topologies. Repeating this process three times,
each time letting a new topology represent Gp, proves that Conjecture 1 holds
true for all trees of size three.

Similarly, we use a tree size ofN = 10 as an example to elaborate on part 2 of the
experiment. A tree of size ten has 100 million possible topology configurations.
Consequently, we choose to only let 1000 randomly chosen topologies represent
the true topology Gp and simulate modem data for each of them in the same
way as described in Part 1.

For each Gp we now sample a sub-set of 10,000 topologies, Gn, for which we
compute the modified parsimony scores and compare them to the score of Gp.
For Gn to best represent the total set of 100 million topologies, we obtain half
of the samples in Gn by Smart Sampling and the other half by Random Sam-
pling (see section 9.7.1.1 Topology sampling). This ensures that Gn includes
topologies that are both similar and dissimilar to the true topology Gp.
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Figure 9.7.3: An illustration of Random and Smart sampling. The ab-
stract shape illustrates the entire topology space for a network of size N .
Each black dot inside the space represents a unique topology. The green
star represents the true topology Gp and the selected set of samples Gn
are marked with red, where triangles correspond to random samples and
squares to smart samples. The arrows illustrate the neighborhood moves
performed to reach each smart sample.
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9.7.4 Training the encoder on the full set of topologies

We evaluate the performance of our proposed methodology when the model
takes all possible topologies for a given tree size into account. As previously
mentioned, we assume that the last-line amplifier/splitter is known, hence only
the topology of the internal nodes will be inferred. In this setting, we test the
performance of our approach for trees of varying sizes, however, keeping them
small makes it feasible to train and test over multiple repetitions. Simultane-
ously, we assess the robustness of our methodology as data conditions become
sub-optimal. We presume based on Conjecture 1, that the true topology, Gp,
leads to the unique lowest parsimony score if the data contains at least one
event on every edge in the network and that there is at most one event at a
given time point.

For each data set, we simulate 1,000 observations of which half will be used
as a test set. In all cases, an observation is given by, firstly; a true topology,
Gp, sampled at random, uniformly from the set of possible topologies for a tree
of a chosen size. Secondly; a set of negative samples, Gn, is chosen to be the
set of all possible topologies excluding Gp. Lastly; an array of time series data
for the modems of the network, simulated specifically according to each specific
experiment explained in the following.

9.7.4.1 Number of events in the time series data

We simulate ten different data sets for both trees of size four, five, and six,
respectively, i.e. a total of 30 data sets. Each of the ten data sets will correspond
to an average number of η events per internal edge in E. We fix the chunk size
to τ = 30 and simulate time series of length |T | = 2τη · |E| = 60η · |E| for
each average number of events, η, in the set {1, 2, . . . , 10}. We do, however,
not perform experiments using all ηs for bigger trees due to the infeasibility
of computation when trees, thus also their time series, increase in size. We
multiply by two to account for the fact that events only occur in a given chunk
with a probability of 50% as described in section 9.7.1 Data simulation.

9.7.4.2 Introducing multi-faults

We simulate 11 different data sets for both trees of sizes four and five, i.e. a
total of 22 data sets. Each of the 11 data sets corresponds to a proportion of
events in the time series, ρ, for which two faults occur simultaneously on two
different internal edges instead of one. We investigate values of ρ in the set
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{0%, 10%, 20%, . . . , 100%}. For each data set, we fix the chunk length to τ = 50
and the average number of events to η = 10 to make sure that the encoder has
good conditions for learning. These numbers are chosen generously to make
the influence of multifaults transparent. This results in a time series length of
|T | = 2τη · |N | = 1, 000 · |N |.

When simulating an event (after checking if an event is present) in a given chunk
as described in section 9.7.1 Data simulation, we sample from a Bernoulli dis-
tribution with probability ρ of a multi-fault. If a multi-fault should be present,
we sample two different internal edges, instead of just one, uniformly from the
set of internal edges and modify the time series of the modems beneath both
faults accordingly.

9.7.4.3 Performance under ideal data conditions

We consider the case with ideal data conditions (i.e. only singular faults, long
time series consisting of long-lasting faults) for our approach and simulate time
series under these conditions for trees of size four and five. Already for trees
of size six, it is too demanding to train the encoder considering ideal data
conditions. This is due to the loss function (9.7), in this case, requiring 64 =
1, 296 (see section 9.3.2) parsimony evaluations for each forward pass in the
training loop, because all possible topologies are considered in the set of negative
samples. We fix the chunk length to τ = 50 to be able to computationally
evaluate gradients in the process of learning the encoder. We simulate time
series with η = 10 events per internal edge in the tree on average, to allow
for accurate modeling. This results in a time series of length 20τ |E|. For these
results, we exclude the results where the encoder ends up in the pitfall of learning
the zero-encoder because it is easy to check if that is the case. This is still a
possibility even though we are using a contrastive approach to avoid it.

9.7.5 The influence of sampling

As the size of a network increases beyond six, it is no longer computationally
viable to train the encoder on a set of a negative sample Gn which includes all
possible topologies. Realistically, Gn must therefore be a sub-set representing
the full topology space. We aim to compare the effectiveness of two different
sampling techniques as well as investigate how many samples are needed to
represent the full topology space. The effectiveness will be evaluated using the
topology accuracy given by (9.9).
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The two sampling techniques considered are Random sampling and Smart sam-
pling which were introduced in section 9.7.1.1. For larger trees, it quickly be-
comes impractical to sample a fixed proportion of the full topology space, to
represent the negative samples Gn. Instead, we investigate the relationship be-
tween the number of negative samples and the size of the trees, denoted as
|N |. Specifically, we explore the size of Gn within the range from 1 to 3|N |,
both values included, as this range is computationally feasible for trees of up to
approximately size 400.

The experiment includes trees of size six, seven, nine, and fifteen, where size
six has the unique benefit that both the true and estimated topology accuracy
(9.9) can be computed and consequently compared. Additionally, for size six
it is feasible to also train the encoder letting Gn include all possible topologies,
making this a baseline for evaluating the effect of letting Gn be a sampled subset
of all possible topologies. This is, however, computationally very heavy. For
trees of size five and smaller, the size of the topology space is at most 125, and
consequently, 3|N | constitutes a significant fraction of the full space, making
such results non-generalizable. This is why we only consider trees of size six or
bigger.

To avoid sampling bias, each experiment for each tree size will be conducted on
500 different true topologies Gp. We compare the two sampling methods using
the same set of true simulated topologies and time series, hence only the set of
negative samples are simulated differently for the two methods. Both sampling
methods are tested on the same test using the estimated topology accuracy
defined in (9.9). A test set constitutes an equal mix of both random and smart
sampling as described in section 9.7.1.1. An illustration of the full experiment
setup is shown in Figure 9.7.4. We set the length of the data chunks to τ = 30
and the length of the time series to |T | = 12τN for a mean number of events
per edge of six.

9.7.6 A generalized encoder for multi-sized trees

Since HFC networks rarely have the same size, i.e. the same number of ampli-
fiers/splitters, we check the ability of our approach to learn an encoder when the
test samples stem from observations with trees of different sizes. We simulate
500 training samples each consisting of a randomly sampled true topology, Gp,
with a number of internal nodes, |N |, in the range 4 to 20, both values included.
The set of negative topologies, Gn, will be based on 3|N | sampled topologies,
sampled using the smart sampling scheme, as described in section 9.7.1.1. For
the test set, we simulate 500 observations based on the same method, however,
letting the set of negative topologies be based on 500 samples, sampled using a
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Figure 9.7.4: The data generation scheme for the sampling influence ex-
periment. Both sampling strategies are trained on the same set of true
topologies and time series, hence only the set of negative samples vary
between the two datasets. Both strategies are validated based on the esti-
mated topology accuracy using the same validation set. Each observation
in this set consists of a mixture of both random and smart samples, as
described in section 9.6.3.

mixture between smart and random sampling, to ensure that the full topology
space is well represented.

In this case, we simulate fewer customer modems, simulating the number in the
range from 2 · (|N | − 1) to 5 · (|N | − 1), ensuring that all internal nodes, except
for the root, each have at least two adjacent modems. We fix the chunk length
to τ = 30 and simulate on average η = 10 events per internal edges, such that
the modem time series have lengths |T | = 2 · 10 · 30 · |N | = 600|N |.

9.8 Results

9.8.1 Uniqueness conjecture experiments

Table 9.8.1 shows the results of the tests designed to disprove Conjecture 1. For
tree sizes from three and up to and including seven, a full test—where all possible
topologies have been tested against all possible topologies—was conducted. In
all cases, the true topology leads to a unique lowest modified parsimony score.
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Table 9.8.1: Results of tests designed to find counterexamples to Conjec-
ture 1. All tests failed to disprove the conjecture.
Here, |N | is the tree size, Ψ(|N |) the number of possible topologies of size
|N | (Cayley’s formula), # Tested the number of unique topologies tested
as being true (i.e. used to simulate data from) followed by the correspond-
ing fraction of Ψ(N) given in parentheses, # Tested against the number of
unique topologies each true topology is tested against, Successful the num-
ber of tests which successfully disproves Conjecture 1, and Proved marks
which test fully prove Conjecture 1 by exhaustive search.

|N | Ψ(|N |) # Tested (%) # Tested against Successful Proved
3 3 3 (100.00) All 0 ✓
4 16 16 (100.00) All 0 ✓
5 125 125 (100.00) All 0 ✓
6 1,296 1,296 (100.00) All 0 ✓
7 16,807 2,004 (11.92) All 0

8 262,144 1,002 (0.38) 10,000 0

9 4,782,969 882 (1.84 · 10−2) 10,000 0

10 100,000,000 786 (7.86 · 10−4) 10,000 0

15 1,946,195,068,359,375 528 (2.71 · 10−11) 10,000 0

For reference, case N = 7 took around 12 hours to compute using six parallel
threads on an Intel Xeon E5-2620 v4 (2.1 GHz) CPU.

For the remaining cases in Table 9.8.1, only a subset of all topologies was tested
against a subset of topologies. However, all tests still show that the true topology
leads to a uniquely best parsimony score.

Given the mix of a random and a smart sampling technique, the subset tests still
provide compelling evidence for Conjecture 1 for larger trees. Random sampling
ensures a wide range of differing topologies is considered while smart sampling
ensures topologies similar to the true topology are also considered. Thus, the
full topology space is well represented in the sampled sub-set tests.

9.8.2 Training the encoder on the full set of topologies

Using the full set of possible topologies as the negative samples in our contrastive
approach gives the model the maximum amount of information possible and,
hence serves as a baseline for the best possible performance.
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Figure 9.8.1 shows the true topology and event accuracy, respectively, of our
contrastive approach as a function of the mean number of events per internal
edge simulated in the time series. Figure 9.8.1a shows a clear trend with the
performance increasing as the information (number of events) in the simulated
time series increases. It also shows that the topology accuracy converges at
100%, affirming the potential of our contrastive approach in learning an encoder
that can extract inherited events from time series.

Interestingly, from Figure 9.8.1b it seems that the trend of the event accuracy
as a function of the mean number of events is rather constant. Moreover, the
increased topology accuracy cannot be directly correlated to a simultaneous
increase in the event accuracy. In other words; it seems that the encoder does not
need to extract all the events in the time series to learn an informative encoder
with the ultimate goal of being able to do accurate topology reconstruction.

Additionally, Figure 9.8.1a also shows that, even though the approach works
well most of the time, there is still a possibility of the encoder learning the
trivial case; the zero-encoder, resulting in a topology accuracy of 0 (recall that
the topology accuracy is based on the true topology being uniquely best). This
is, however, not believed to be problematic, since it is easy to check if this is
the case after training.

9.8.2.1 Introducing multi-faults

We test the robustness of our approach with respect to the challenge posed by
multi-faults as introduced in section 9.5.4. Figure 9.8.2 shows the performance
of our approach as a function of the proportion of simulated events that are
multi-faults, i.e. indistinguishable events happening simultaneously at two loca-
tions in the topology, affecting the descendant modems of both locations. From
Figure 9.8.2a it seems that our approach is somewhat robust to multi-faults
up to a level of approximately 20-30%. The figure also suggests a similar ro-
bustness for trees of sizes four and five, respectively, due to the curves showing
close-to-identical trends. In Figure 9.8.2b a seemingly negative trend is visible
that ends at approximately 50% (corresponding to a random encoder) when all
the generated faults are multi-faults. It should be mentioned that the number
of simulated events in this case is rather high (ten events per internal node), to
allow for higher granularity in the tested proportions.



184 Paper C

(a) (b)

Figure 9.8.1: Performance of the proposed approach as a function of
the number of events generated in the simulated data. Reported using a
grouped boxplot of ten repeated experiments for each number of events
per internal node and tree size combination. Each repetition is randomly
initialized with a new encoder. Results are truncated at the point where
we did not find it feasible to train due to memory computation constraints
(length of time series, thus also computational demand increases with the
number of events).
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(a) (b)

Figure 9.8.2: Performance of the proposed approach as a function of an
increasing amount of multi-faults, i.e. faults that happen on multiple edges
at the same time. Results are reported as the median and 50% confidence
interval (CI) of ten experiments, each with a new and randomly initialized
encoder.
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Table 9.8.2: Results for trees of size four and five when all possible topolo-
gies are used as negative samples in the contrastive approach. The results
are reported as the mean and standard deviation of 20 repetitions where a
new random initialization of the encoder is performed. The length of the
chunks, τ , is chosen to be 50, to allow for accurate modeling. Because it is
easy to check, zero-encoders have been excluded from these results which
means that experiments have been repeated until 20 encoders have been
learned that did not end up in this pitfall.

|N | Topology accuracy Event accuracy
4 98.27 % (±3.01) 86.16 % (±9.82)
5 97.92 % (±3.36) 82.88 % (±10.13)

9.8.2.2 Performance under ideal data conditions

Table 9.8.2 shows the results for trees of sizes four and five in an ideal setting
without multi-faults and with time series containing the information necessary
to learn an optimal encoder, based the experiment in Figure 9.8.1. These re-
sults have been reported as the mean and standard deviation of 20 repetitions,
however, removing samples in which the zero-encoder was learned.

We observe that the accuracy is very high in both cases. This suggests that
the learned encoder successfully generated representations that, in almost all
instances, resulted in the topology from which the data was sampled, having
the lowest parsimony score among all possible topologies.

Similar conclusions as the ones made for Figure 9.8.1 can be drawn; i.e. the
event accuracy stagnates at a sub-optimal level of approximately 85%, which
is inconsequential to the topology accuracy which is near perfect at a level of
approximately 98%.

9.8.3 The influence of sampling

The topology accuracy for trees of sizes 6, 7, 9, and 15 is depicted in Figure 9.8.3.
Here, the negative set of topologies Gn, utilized during training the encoder, is
a sampled subset. Assuming the results from Table 9.8.2 can be generalized to
larger trees, we know that it is theoretically possible to train an encoder that
delivers a topology accuracy of around 98%. Since this result was obtained when
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Figure 9.8.3: The above results illustrate how the topology accuracy of
trees of size 6, 7, 9, and 15 is influenced by each of the two sampling
strategies considered as well as the sample size. Each data point represents
an average of ten repetitions of training and validating the encoder on
500 observations, respectively, where each observation is based on a unique
combination of a true topology, Gp, and modem data. See Figure 9.7.4 for
an illustration of the data generation scheme. The whiskers on each data
point denote the standard deviation.
Continued on the next page
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Figure 9.8.3 (continued): The x-axis (log scale) shows the number of
samples in Gn in the range from 1 to 3N , used to train the model in each
observation.
The trained encoders are validated on a validation set containing 500 obser-
vations each consisting of both random and smart samples. Zero-encoders
have been excluded from the results.
For tree size N = 6, the true topology accuracy is computed, whereas the
remainder of the results are based on the estimated topology accuracy. In
all experiments, employing the smart sampling scheme for sampling the
negative set of topologies used in training outperforms the random sam-
pling scheme.

training and testing on the full set of possible topologies, it serves as a baseline
when evaluating the influence of sampling.

The figure furthermore compares the topology accuracy when sampling Gn dur-
ing the training stage using either a fully Smart or fully Random sampling
scheme. Moreover, Figure 9.8.3 shows how the number of samples used when
training the encoder, i.e. the size of Gn, affects the topology accuracy.

It is immediately clear that Smart sampling outperforms Random sampling in
all four experiments in Figure 9.8.3. Moreover, for N = 6 there is a positive
correlation between the true topology accuracy and the number of samples in
Gn. This trend is not apparent for the remaining values of N considering the
estimated topology accuracy. However, it is important to note that these results
contain an increasing level of uncertainty. For N = 6, the full topology space is
small enough for us to compute the true topology accuracy, i.e. where the test
set contains all possible topologies of size six. For the remaining experiments, it
is only possible to compute the estimated topology accuracy, i.e. only comparing
the true topology to a subset of possible topologies during testing. Since the size
of the test set compared to the full set of topologies dramatically decreases for
increasing tree sizes, consequently, so does the validity of the estimated topology
accuracy.

Despite this evaluation uncertainty, we have attempted to sample a fair test set
of topologies using both Smart and Random samples. In Figure 9.8.3, however,
the topology accuracy appears to improve for increasing tree sizes. This suggests
that the estimated topology accuracy is optimistic for bigger trees, as the full
variation of the exponentially increasing topology space might not be captured
by the fixed-sized sampled test set. However, an alternative explanation is that
the topology accuracy improves for bigger trees due to an increase in the event
accuracy, which we found to improve by approximately 10% from the N = 6
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Table 9.8.3: Results for generalized encoder. Results, especially event
accuracy are better than for when an encoder is only trained on one tree
size.

Topology accuracy Event accuracy
99.89 % (±0.23) 93.44 % (± 5.87)

case to the N = 15 case.

Overall, the smart sampling scheme during training results in consistently high
topology accuracies with respect to both the size of the tree and the number
of training samples, Gn. Moreover, this is achievable with considerably fewer
computational resources.

9.8.4 A generalized encoder for multi-sized trees

Lastly, Table 9.8.3 shows the results of training and testing a generalized encoder
on sets of trees of varying sizes up to 20. Although one would expect this learning
task to be more challenging, the results in the table suggest otherwise. Here,
zero-encoders have been excluded from the results enabling a fair comparison
with results in Table 9.8.2. However, it must be noted that in Table 9.8.2 the
true topology accuracy is reported, whereas in Table 9.8.3 the topology accuracy
is partially estimated.

As compared to the results of training and testing an encoder under the best
possible conditions (see Table 9.8.2), the event accuracy improves from approx-
imately 85% to more than 90% in the case of the generalized encoder. As the
event accuracy is never an estimation and thus a reliable measure, this sug-
gests that when the encoder is trained on only a single tree size, it is prone to
overfitting.

Despite the increased event accuracy, Table 9.8.3 shows that the generalized
encoder obtains only a slightly improved topology accuracy of approximately
99% as compared to the 98% observed in Table 9.8.2. Here, it is important to
mention that this is only an estimated topology accuracy, since for larger trees,
the test set only includes a sampled subset of all possible topologies.
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9.9 Discussion

Overall, we find the results of this preliminary study of our proposed methodol-
ogy promising. We demonstrated that a topology prediction accuracy of around
99% and an event accuracy of up to 93% are attainable for simplified time series
data.

Additionally, we designed a set of experiments that: studied the robustness of
the methodology with respect to various data assumptions; investigated perfor-
mance under ideal data conditions; considered the impact of sampling; and in-
vestigated how generalizing the methodology impacted performance. We found
the performance of the encoder to be best when trained on a set of trees of var-
ious sizes as opposed to one single size (see Table 9.8.2 and Table 9.8.3). When
investigating the influence of multi-faults, we found that as long as multi-faults
do not constitute more than 20% of all data events, the topology accuracy does
not worsen by more than 10% (see Figure 9.8.2). Furthermore, we found that
the minimum number of events needed to achieve the best possible topology
accuracy depended on the size of the tree. As events were simulated to occur on
random edges, this result intuitively makes sense, as it for larger trees become
progressively less likely to sample each unique edge at least once due to the
increasing total number of edges.

As trees grow in size, the proposed methodology is only able to consider a set
of training and test topologies constituting a diminishing fraction of the com-
plete topology space. We analyzed two sampling schemes and found the smart
sampling scheme based on neighborhood moves to be best performing during
training (see Figure 9.8.3). In testing, we let the topology test set be a mix
of both smart and random samples. We computed the true topology accuracy
for trees of size 6, where the full topology space contains 1,296 topologies, as a
function of using various sizes of sampled training sets. The estimated topology
accuracy of larger trees was computed as a function of the same training scheme,
allowing for a credible comparison between the true and estimated topology ac-
curacy as well as the two sampling schemes (see Figure 9.7.4).

We experimentally proved Conjecture 1 to be true for tree sizes up to and
including six and used the same training and testing sampling scheme as above
to challenge the validity of the conjecture for larger trees (see Table 9.8.1).
Moreover, the 99% topology accuracy obtained in other experiments, meaning
a unique best topology was almost always found, adds to the plausibility of
Conjecture 1 although it remains to be formally proved.

For this preliminary study, data events were simulated to be simple and distin-
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guishable and to occur on a single edge at a time (except for when investigating
the influence of multi-faults). While real modem data is not this ideal, the en-
coder should still be able to identify the positions within the data where the
behavior is suitable with respect to the contrastive loss function. Useful data
behavior does not have to be actual events that modify the signal in a sim-
ple way as visualized in Figure 9.2.2, but can also be an underlying correlation
structure, e.g. the same general behavior but scaled differently, or more complex
events such as local instantaneous spikes or cyclic behavior. As modems collect
various data metrics at every time point, some metrics may not be informative
on their own but could be valuable collectively. Our proposed encoder can be
readily adapted to handle multiple time series inputs on different scales, pro-
ducing multiple latent variables. This collection of latent variables could form
an informative ensemble.

Due to the proposed loss function including a minimization problem building
on a bottom-up (poster-order) traversal of the internal nodes of the network,
the evaluation of this is computationally expensive and not readily improvable
by e.g. the use of GPUs. This is, however, not a problem for the ISPs (Internet
Service Providers) as they would only need to train a generalized model once to
infer all the missing topology. After this point, the loss function does not need
to be evaluated again.

For the proposed methodology to give good results for ISPs, one of the main
challenges would be to obtain a descriptive and extensive dataset that could
be used for benchmarking. In training the model, the true topology of a given
last-mile network would need to be known and as mentioned earlier, many ISPs
often only partially know their own topologies. In the case of TDC NET; while
the whole topology is only known for a small set of last-mile networks, it is far
from all networks in which nothing is known. This means that ISPs could use
the known part (and corresponding modem time series) of a network to train
the encoder model, and then use the trained model to infer the missing part of
the topology.

One of our main assumptions in our work is that every internal node needs
to have at least one modem child. While this assumption might not hold for
real networks, ISPs could train an encoder using only the parts of a set of real
networks in which this assumption holds. Additionally, deployment of the full
approach would mean using the encoded events to search for the optimal topol-
ogy including geographic distances using e.g. the algorithm proposed by Pisinger
& Sørensen in [138]. This means that the assumptions does not necessarily need
to hold true for good deployment results in real life.

Our proposed loss function aims to simultaneously minimize the parsimony score
of the true topology while maximizing the dissimilarities between distinct topolo-
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gies. However, it may be oversimplified to solely focus on maximizing the dis-
tances between any two pairs, as similar topologies could yield small maximum
distances. Therefore, incorporating a more sophisticated loss function that also
considers the degree of similarity among all pairwise sets of topologies could
prove beneficial.

Although we obtain promising results, there is still the possibility of the encoder
ending up in the pitfall of learning a zero-encoder, which, in some cases, is
sensitive to weight initialization. Even though it is easy to check if the encoder
ends up in this pitfall, it could also be addressed by doing unsupervised pre-
training of the weights of the network, making this less likely.

9.10 Conclusion

We propose a novel contrastive approach to performing discrete encoding of
continuous time series while confirming the feasibility of integrating an opti-
mization algorithm into a deep learning loss function. We present an encoder,
f , tailored for HFC networks, which takes a set of continuous time series as
input and generates binary sequences, implicitly learning data events in order
to solve the topology reconstruction problem. Our approach leverages a con-
trastive loss function, incorporating a modified algorithm for computing the
parsimony score. The modified parsimony score is designed to enable unique
optimal solutions and we introduce a conjecture that states this is possible for all
trees. We prove the conjecture for trees with up to six internal nodes and pro-
vide compelling evidence for bigger trees. To address the non-differentiability of
binary sequences during training in the deep learning context, we also propose
a continuous variant of the new modified parsimony algorithm.

Our results are promising, achieving an estimated accuracy of 99.89 % in topol-
ogy reconstruction and an accuracy of 93.44 % in data event identification for a
generalized encoder considering trees of multiple sizes. Additionally, we propose
a sampling scheme to ensure comprehensive coverage of the full topology space,
providing a solid foundation for training an encoder and generating accuracy
estimates for larger trees.

As this work is only a preliminary pilot study, the natural next step will be to
evaluate the methodology in a more realistic setting, potentially using real mo-
dem data. Nevertheless, our results still confirm the potential for infrastructure
owners to infer missing topology using continuous time series from the customer
modems on the network.
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Although our proposed methodology was designed around a telecommunication
framework, its applicability may extend to other fields. For instance that of
phylogenetic inference in biology where despite genetic material being inherently
discrete, the uncertainty and ambiguity in the data may justify adopting a
continuous perspective. E.g. by considering the probability of each of the four
nucleotides found in DNA occurring at each position in a genetic sequence.

Overall, our work highlights the advantage of integrating an optimization prob-
lem in a deep learning setting rather than using each of the methods individually.
Despite the increased complexity introduced by this approach, its relevance re-
mains significant, particularly for models requiring only a single training phase.
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Appendices

9.A Proof of Algorithm 9.2

Firstly, Algorithm 9.2 only modifies how the parsimony score is calculated in
the top layer of a tree, namely when calculating the cost of the root node with
respect to its immediate children. By letting the children of the root node be
represented by the set Droot, then every subtree rooted in a node u ∈ Droot,
must be optimal. This follows directly from the proof of the original parsimony
algorithm since algorithm 9.2 calculates the cost of these subtrees in exactly the
same manner.

Now, it remains to be proven that it is optimal to pay the cost of the root-node
assumption in the top layer of the tree, and that it cannot be cheaper to move
the top-layer data mutations further down the tree.

This part of the proof can be split up into two cases. For every node u ∈ Droot

we have that either:
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• Case 1: the optimal state set of node u ∈ Droot includes the state of the
root node.

• Case 2: the optimal state set of node u ∈ Droot does not include the state
of the root node.

It is straightforward to prove that Case 1 is optimal. Since the state of the root
is included in the optimal state set of node v, then there is no data mutation on
edge (root, v), and the cost associated with this edge is then zero. Since muta-
tion costs must be positive, a cost of zero in the top layer cannot be improved.
Moreover, we have already argued that the subtree rooted in node v is optimal,
and consequently also not improvable. In conclusion, in Case 1, algorithm 9.2
will compute the best possible parsimony score.

In Case 2, the state of the root node is not included in the state set of node v.
As a result, algorithm 9.2 pays a cost of one for letting a data mutation occur
on edge (root, v). The total cost of this part of the tree, according to algorithm
9.2, is then; 1 + P(Ẑ, Ĝ(v)). The question is then, if this can be done cheaper
by letting the mutation occur somewhere else in the subtree G(v). i.e. obtain a
cost < 1 + P(Ẑ, Ĝ(v)). This could potentially be achieved in two ways:

i) cost is ≤ 0 + P(Ẑ, Ĝ(v)), i.e. the cost of edge (root, v) disappears while
the cost of the subtree rooted in v stays the same or becomes less.

ii) cost is ≤ 1+
(
P(Ẑ, Ĝ(v))− 1

)
, i.e. the cost of edge (root, v) remains one,

while the cost of the subtree rooted in v is decreased by at least one.

In i), if the cost of edge (root, v) must disappear, then it means that the state
of the root node must also be the state of node v. But given that we are in Case
2, then the root node state is not in the optimal state set of v. Consequently,
when the state of v is forced to equal the root node state, then the total cost
of the subtree rooted in v must be suboptimal, i.e. > P(Ẑ, Ĝ(v)), since at least
one additional mutation must occur in the subtree rooted in v.

In ii), the cost of edge (root, v) remains one—the state of v can be chosen freely—
but consequently the subtree rooted in v must be less than P(Ẑ, Ĝ(v)). Since
P(Ẑ, Ĝ(v)) is already optimal, this is impossible. This concludes the proof.

■
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